ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2d GIF version

Theorem imaeq2d 4696
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
imaeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2d
StepHypRef Expression
1 imaeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 imaeq2 4692 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  cima 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386
This theorem is referenced by:  imaeq12d  4697  nfimad  4705  elimasng  4721  ressn  4886  foima  5139  f1imacnv  5171  fvco2  5270  fsn2  5365  resfunexg  5410  funfvima3  5420  funiunfvdm  5430  isoselem  5487  fnexALT  5768  eceq1  6172  uniqs2  6197  ecinxp  6212  phplem4  6349  phplem4dom  6355  phplem4on  6360
  Copyright terms: Public domain W3C validator