Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasng GIF version

Theorem imasng 4714
 Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem imasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2611 . 2 (𝐴𝐵𝐴 ∈ V)
2 dfima2 4694 . . 3 (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦}
3 breq1 3790 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
43rexsng 3436 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦𝐴𝑅𝑦))
54abbidv 2197 . . 3 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦𝐴𝑅𝑦})
62, 5syl5eq 2126 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
71, 6syl 14 1 (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1285   ∈ wcel 1434  {cab 2068  ∃wrex 2350  Vcvv 2602  {csn 3400   class class class wbr 3787   “ cima 4368 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-xp 4371  df-cnv 4373  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378 This theorem is referenced by:  elreimasng  4715  elimasn  4716  args  4718  fnsnfv  5258  funfvdm2  5263  dfec2  6168  shftfibg  9835  shftfib  9838
 Copyright terms: Public domain W3C validator