![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imassrn | GIF version |
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1550 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
2 | 1 | ss2abi 3075 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
3 | dfima3 4721 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
4 | dfrn3 4572 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
5 | 2, 3, 4 | 3sstr4i 3047 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∃wex 1422 ∈ wcel 1434 {cab 2069 ⊆ wss 2982 〈cop 3419 ran crn 4392 “ cima 4394 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-xp 4397 df-cnv 4399 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 |
This theorem is referenced by: imaexg 4730 0ima 4735 cnvimass 4738 fimacnv 5348 f1opw2 5757 smores2 5963 ecss 6234 f1imaen2g 6361 fopwdom 6401 phplem4dom 6418 isinfinf 6453 djuin 6556 |
Copyright terms: Public domain | W3C validator |