ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbi2 GIF version

Theorem imbi2 230
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Assertion
Ref Expression
imbi2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem imbi2
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imbi2d 223 1 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  3impexpbicom  1343
  Copyright terms: Public domain W3C validator