ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imcj GIF version

Theorem imcj 10647
Description: Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imcj (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))

Proof of Theorem imcj
StepHypRef Expression
1 recl 10625 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 7794 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 7715 . . . . . 6 i ∈ ℂ
4 imcl 10626 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 7794 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 7747 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 410 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negsubd 8079 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
9 mulneg2 8158 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
103, 5, 9sylancr 410 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1110oveq2d 5790 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
12 remim 10632 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
138, 11, 123eqtr4rd 2183 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
1413fveq2d 5425 . 2 (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = (ℑ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))))
154renegcld 8142 . . 3 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
16 crim 10630 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℑ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴))
171, 15, 16syl2anc 408 . 2 (𝐴 ∈ ℂ → (ℑ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℑ‘𝐴))
1814, 17eqtrd 2172 1 (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  ici 7622   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934  ccj 10611  cre 10612  cim 10613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-cj 10614  df-re 10615  df-im 10616
This theorem is referenced by:  cjcj  10655  ipcnval  10658  imcji  10692  imcjd  10722
  Copyright terms: Public domain W3C validator