ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp43 GIF version

Theorem imp43 347
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 342 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 122 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  fundmen  6353  divgt0  8017  divge0  8018  le2sq2  9648
  Copyright terms: Public domain W3C validator