ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp4b GIF version

Theorem imp4b 336
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4b ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Proof of Theorem imp4b
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4a 335 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32imp 119 1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  imp43  341  ltmpig  6495  bndndx  8238
  Copyright terms: Public domain W3C validator