ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indmss GIF version

Theorem indmss 3239
Description: De Morgan's law for intersection. In classical logic, this would be equality rather than subset, as in Theorem 5.2(13') of [Stoll] p. 19. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
indmss ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))

Proof of Theorem indmss
StepHypRef Expression
1 difindiss 3234 1 ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ⊆ (V ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  Vcvv 2610  cdif 2979  cun 2980  cin 2981  wss 2982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995
This theorem is referenced by:  difdifdirss  3343
  Copyright terms: Public domain W3C validator