ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr GIF version

Theorem indstr 8762
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1 (𝑥 = 𝑦 → (𝜑𝜓))
indstr.2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem indstr
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3797 . . . . 5 (𝑧 = 1 → (𝑦 < 𝑧𝑦 < 1))
21imbi1d 229 . . . 4 (𝑧 = 1 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 1 → 𝜓)))
32ralbidv 2369 . . 3 (𝑧 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 1 → 𝜓)))
4 breq2 3797 . . . . 5 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
54imbi1d 229 . . . 4 (𝑧 = 𝑤 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 𝑤𝜓)))
65ralbidv 2369 . . 3 (𝑧 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
7 breq2 3797 . . . . 5 (𝑧 = (𝑤 + 1) → (𝑦 < 𝑧𝑦 < (𝑤 + 1)))
87imbi1d 229 . . . 4 (𝑧 = (𝑤 + 1) → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < (𝑤 + 1) → 𝜓)))
98ralbidv 2369 . . 3 (𝑧 = (𝑤 + 1) → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
10 breq2 3797 . . . . 5 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
1110imbi1d 229 . . . 4 (𝑧 = 𝑥 → ((𝑦 < 𝑧𝜓) ↔ (𝑦 < 𝑥𝜓)))
1211ralbidv 2369 . . 3 (𝑧 = 𝑥 → (∀𝑦 ∈ ℕ (𝑦 < 𝑧𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓)))
13 nnnlt1 8132 . . . . 5 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
1413pm2.21d 582 . . . 4 (𝑦 ∈ ℕ → (𝑦 < 1 → 𝜓))
1514rgen 2417 . . 3 𝑦 ∈ ℕ (𝑦 < 1 → 𝜓)
16 1nn 8117 . . . . 5 1 ∈ ℕ
17 elex2 2616 . . . . 5 (1 ∈ ℕ → ∃𝑢 𝑢 ∈ ℕ)
18 nfra1 2398 . . . . . 6 𝑦𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)
1918r19.3rm 3337 . . . . 5 (∃𝑢 𝑢 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
2016, 17, 19mp2b 8 . . . 4 (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) ↔ ∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓))
21 rsp 2412 . . . . . . . . . 10 (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 ∈ ℕ → (𝑦 < 𝑤𝜓)))
2221com12 30 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < 𝑤𝜓)))
2322adantl 271 . . . . . . . 8 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < 𝑤𝜓)))
24 indstr.2 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
2524rgen 2417 . . . . . . . . . . . 12 𝑥 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑)
26 nfv 1462 . . . . . . . . . . . . 13 𝑤(∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑)
27 nfv 1462 . . . . . . . . . . . . . 14 𝑥𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)
28 nfsbc1v 2834 . . . . . . . . . . . . . 14 𝑥[𝑤 / 𝑥]𝜑
2927, 28nfim 1505 . . . . . . . . . . . . 13 𝑥(∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)
30 breq2 3797 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
3130imbi1d 229 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝑦 < 𝑥𝜓) ↔ (𝑦 < 𝑤𝜓)))
3231ralbidv 2369 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓)))
33 sbceq1a 2825 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
3432, 33imbi12d 232 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)))
3526, 29, 34cbvral 2574 . . . . . . . . . . . 12 (∀𝑥 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ ∀𝑤 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑))
3625, 35mpbi 143 . . . . . . . . . . 11 𝑤 ∈ ℕ (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑)
3736rspec 2416 . . . . . . . . . 10 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → [𝑤 / 𝑥]𝜑))
38 vex 2605 . . . . . . . . . . . . 13 𝑦 ∈ V
39 indstr.1 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜓))
4038, 39sbcie 2849 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝜑𝜓)
41 dfsbcq 2818 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ([𝑦 / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
4240, 41syl5bbr 192 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝜓[𝑤 / 𝑥]𝜑))
4342biimprcd 158 . . . . . . . . . 10 ([𝑤 / 𝑥]𝜑 → (𝑦 = 𝑤𝜓))
4437, 43syl6 33 . . . . . . . . 9 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 = 𝑤𝜓)))
4544adantr 270 . . . . . . . 8 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 = 𝑤𝜓)))
4623, 45jcad 301 . . . . . . 7 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ((𝑦 < 𝑤𝜓) ∧ (𝑦 = 𝑤𝜓))))
47 jaob 664 . . . . . . 7 (((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓) ↔ ((𝑦 < 𝑤𝜓) ∧ (𝑦 = 𝑤𝜓)))
4846, 47syl6ibr 160 . . . . . 6 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓)))
49 nnleltp1 8491 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦𝑤𝑦 < (𝑤 + 1)))
50 nnz 8451 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
51 nnz 8451 . . . . . . . . . 10 (𝑤 ∈ ℕ → 𝑤 ∈ ℤ)
52 zleloe 8479 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑦𝑤 ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5350, 51, 52syl2an 283 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦𝑤 ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5449, 53bitr3d 188 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5554ancoms 264 . . . . . . 7 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑤 + 1) ↔ (𝑦 < 𝑤𝑦 = 𝑤)))
5655imbi1d 229 . . . . . 6 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦 < (𝑤 + 1) → 𝜓) ↔ ((𝑦 < 𝑤𝑦 = 𝑤) → 𝜓)))
5748, 56sylibrd 167 . . . . 5 ((𝑤 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → (𝑦 < (𝑤 + 1) → 𝜓)))
5857ralimdva 2430 . . . 4 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ ∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
5920, 58syl5bi 150 . . 3 (𝑤 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑤𝜓) → ∀𝑦 ∈ ℕ (𝑦 < (𝑤 + 1) → 𝜓)))
603, 6, 9, 12, 15, 59nnind 8122 . 2 (𝑥 ∈ ℕ → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
6160, 24mpd 13 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wex 1422  wcel 1434  wral 2349  [wsbc 2816   class class class wbr 3793  (class class class)co 5543  1c1 7044   + caddc 7046   < clt 7215  cle 7216  cn 8106  cz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433
This theorem is referenced by:  indstr2  8777
  Copyright terms: Public domain W3C validator