ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr2 GIF version

Theorem indstr2 8854
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1 (𝑥 = 1 → (𝜑𝜒))
indstr2.2 (𝑥 = 𝑦 → (𝜑𝜓))
indstr2.3 𝜒
indstr2.4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr2 (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 elnn1uz2 8852 . . 3 (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)))
3 indstr2.3 . . . . 5 𝜒
4 nnnlt1 8209 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
54adantl 271 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
6 breq2 3810 . . . . . . . . . . 11 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
76adantr 270 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦 < 1))
85, 7mtbird 631 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥)
98pm2.21d 582 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝜓))
109ralrimiva 2440 . . . . . . 7 (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
11 pm5.5 240 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
1210, 11syl 14 . . . . . 6 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
13 indstr2.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜒))
1412, 13bitrd 186 . . . . 5 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜒))
153, 14mpbiri 166 . . . 4 (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
16 indstr2.4 . . . 4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
1715, 16jaoi 669 . . 3 ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
182, 17sylbi 119 . 2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
191, 18indstr 8839 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  wral 2353   class class class wbr 3806  cfv 4953  1c1 7121   < clt 7292  cn 8183  2c2 8233  cuz 8777
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-addcom 7215  ax-addass 7217  ax-distr 7219  ax-i2m1 7220  ax-0lt1 7221  ax-0id 7223  ax-rnegex 7224  ax-cnre 7226  ax-pre-ltirr 7227  ax-pre-ltwlin 7228  ax-pre-lttrn 7229  ax-pre-ltadd 7231
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-br 3807  df-opab 3861  df-mpt 3862  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-sub 7425  df-neg 7426  df-inn 8184  df-2 8242  df-n0 8433  df-z 8510  df-uz 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator