![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inex2 | GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3165 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 3920 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2152 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 Vcvv 2602 ∩ cin 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-in 2980 |
This theorem is referenced by: ssex 3923 peano5nnnn 7120 peano5nni 8109 |
Copyright terms: Public domain | W3C validator |