ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inflbti GIF version

Theorem inflbti 6911
Description: An infimum is a lower bound. See also infclti 6910 and infglbti 6912. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infclti.ex (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
inflbti (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem inflbti
StepHypRef Expression
1 infclti.ti . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
21cnvti 6906 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
3 infclti.ex . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
43cnvinfex 6905 . . . . 5 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
52, 4supubti 6886 . . . 4 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
65imp 123 . . 3 ((𝜑𝐶𝐵) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
7 df-inf 6872 . . . . . 6 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
87a1i 9 . . . . 5 ((𝜑𝐶𝐵) → inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅))
98breq2d 3941 . . . 4 ((𝜑𝐶𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
102, 4supclti 6885 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 4720 . . . . . 6 ((sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝐶𝐵) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1211bicomd 140 . . . . 5 ((sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝐶𝐵) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1310, 12sylan 281 . . . 4 ((𝜑𝐶𝐵) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
149, 13bitrd 187 . . 3 ((𝜑𝐶𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
156, 14mtbird 662 . 2 ((𝜑𝐶𝐵) → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))
1615ex 114 1 (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  ccnv 4538  supcsup 6869  infcinf 6870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-cnv 4547  df-iota 5088  df-riota 5730  df-sup 6871  df-inf 6872
This theorem is referenced by:  zssinfcl  11641  infssuzledc  11643
  Copyright terms: Public domain W3C validator