![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infnlbti | GIF version |
Description: A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.) |
Ref | Expression |
---|---|
infclti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
infclti.ex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infnlbti | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infclti.ti | . . . . . 6 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | infclti.ex | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
3 | 1, 2 | infglbti 6533 | . . . . 5 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
4 | 3 | expdimp 255 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) |
5 | rexalim 2366 | . . . 4 ⊢ (∃𝑧 ∈ 𝐵 𝑧𝑅𝐶 → ¬ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ¬ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶)) |
7 | 6 | con2d 587 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶 → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
8 | 7 | expimpd 355 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 ∀wral 2353 ∃wrex 2354 class class class wbr 3806 infcinf 6491 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2826 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-opab 3861 df-cnv 4400 df-iota 4918 df-riota 5520 df-sup 6492 df-inf 6493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |