ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzcldc GIF version

Theorem infssuzcldc 10572
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzcldc (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzcldc
Dummy variables 𝑦 𝑤 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
3 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
4 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
51, 2, 3, 4infssuzex 10570 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝑆 𝑤 < 𝑦)))
6 ssrab2 3088 . . . . . . 7 {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} ⊆ (ℤ𝑀)
72, 6eqsstri 3038 . . . . . 6 𝑆 ⊆ (ℤ𝑀)
8 uzssz 8789 . . . . . 6 (ℤ𝑀) ⊆ ℤ
97, 8sstri 3017 . . . . 5 𝑆 ⊆ ℤ
10 zssre 8509 . . . . 5 ℤ ⊆ ℝ
119, 10sstri 3017 . . . 4 𝑆 ⊆ ℝ
1211a1i 9 . . 3 (𝜑𝑆 ⊆ ℝ)
135, 12infrenegsupex 8833 . 2 (𝜑 → inf(𝑆, ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
141, 2, 3, 4infssuzex 10570 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
1514, 12infsupneg 8835 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆}𝑦 < 𝑧)))
16 negeq 7438 . . . . . . . . . 10 (𝑤 = 𝑢 → -𝑤 = -𝑢)
1716eleq1d 2151 . . . . . . . . 9 (𝑤 = 𝑢 → (-𝑤𝑆 ↔ -𝑢𝑆))
1817elrab 2757 . . . . . . . 8 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (𝑢 ∈ ℝ ∧ -𝑢𝑆))
199sseli 3004 . . . . . . . . . 10 (-𝑢𝑆 → -𝑢 ∈ ℤ)
2019adantl 271 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → -𝑢 ∈ ℤ)
21 simpl 107 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℝ)
2221recnd 7279 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℂ)
23 znegclb 8535 . . . . . . . . . 10 (𝑢 ∈ ℂ → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2422, 23syl 14 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → (𝑢 ∈ ℤ ↔ -𝑢 ∈ ℤ))
2520, 24mpbird 165 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ -𝑢𝑆) → 𝑢 ∈ ℤ)
2618, 25sylbi 119 . . . . . . 7 (𝑢 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} → 𝑢 ∈ ℤ)
2726ssriv 3012 . . . . . 6 {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ
2827a1i 9 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤𝑆} ⊆ ℤ)
2915, 28suprzclex 8596 . . . 4 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆})
30 nfrab1 2538 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤𝑆}
31 nfcv 2223 . . . . . 6 𝑤
32 nfcv 2223 . . . . . 6 𝑤 <
3330, 31, 32nfsup 6500 . . . . 5 𝑤sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3433nfneg 7442 . . . . . 6 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < )
3534nfel1 2233 . . . . 5 𝑤-sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆
36 negeq 7438 . . . . . 6 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → -𝑤 = -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ))
3736eleq1d 2151 . . . . 5 (𝑤 = sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) → (-𝑤𝑆 ↔ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3833, 31, 35, 37elrabf 2755 . . . 4 (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ {𝑤 ∈ ℝ ∣ -𝑤𝑆} ↔ (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
3929, 38sylib 120 . . 3 (𝜑 → (sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ ℝ ∧ -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆))
4039simprd 112 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤𝑆}, ℝ, < ) ∈ 𝑆)
4113, 40eqeltrd 2159 1 (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  DECID wdc 776   = wceq 1285  wcel 1434  {crab 2357  wss 2982  cfv 4952  (class class class)co 5564  supcsup 6490  infcinf 6491  cc 7111  cr 7112   < clt 7285  -cneg 7417  cz 8502  cuz 8770  ...cfz 9175
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-isom 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-sup 6492  df-inf 6493  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-inn 8177  df-n0 8426  df-z 8503  df-uz 8771  df-fz 9176  df-fzo 9300
This theorem is referenced by:  lcmval  10670  lcmcllem  10674
  Copyright terms: Public domain W3C validator