ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intab GIF version

Theorem intab 3671
Description: The intersection of a special case of a class abstraction. 𝑦 may be free in 𝜑 and 𝐴, which can be thought of a 𝜑(𝑦) and 𝐴(𝑦). (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
intab.1 𝐴 ∈ V
intab.2 {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V
Assertion
Ref Expression
intab {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem intab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2062 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴))
21anbi2d 445 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝜑𝑧 = 𝐴) ↔ (𝜑𝑥 = 𝐴)))
32exbidv 1722 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝜑𝑧 = 𝐴) ↔ ∃𝑦(𝜑𝑥 = 𝐴)))
43cbvabv 2177 . . . . . . 7 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
5 intab.2 . . . . . . 7 {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V
64, 5eqeltri 2126 . . . . . 6 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ V
7 nfe1 1401 . . . . . . . . 9 𝑦𝑦(𝜑𝑧 = 𝐴)
87nfab 2198 . . . . . . . 8 𝑦{𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
98nfeq2 2205 . . . . . . 7 𝑦 𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
10 eleq2 2117 . . . . . . . 8 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → (𝐴𝑥𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}))
1110imbi2d 223 . . . . . . 7 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → ((𝜑𝐴𝑥) ↔ (𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})))
129, 11albid 1522 . . . . . 6 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → (∀𝑦(𝜑𝐴𝑥) ↔ ∀𝑦(𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})))
136, 12elab 2709 . . . . 5 ({𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ↔ ∀𝑦(𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}))
14 19.8a 1498 . . . . . . . . 9 ((𝜑𝑧 = 𝐴) → ∃𝑦(𝜑𝑧 = 𝐴))
1514ex 112 . . . . . . . 8 (𝜑 → (𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
1615alrimiv 1770 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
17 intab.1 . . . . . . . 8 𝐴 ∈ V
1817sbc6 2811 . . . . . . 7 ([𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴) ↔ ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
1916, 18sylibr 141 . . . . . 6 (𝜑[𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴))
20 df-sbc 2787 . . . . . 6 ([𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴) ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2119, 20sylib 131 . . . . 5 (𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2213, 21mpgbir 1358 . . . 4 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)}
23 intss1 3657 . . . 4 ({𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} → {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2422, 23ax-mp 7 . . 3 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
25 19.29r 1528 . . . . . . . 8 ((∃𝑦(𝜑𝑧 = 𝐴) ∧ ∀𝑦(𝜑𝐴𝑥)) → ∃𝑦((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)))
26 simplr 490 . . . . . . . . . 10 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧 = 𝐴)
27 pm3.35 333 . . . . . . . . . . 11 ((𝜑 ∧ (𝜑𝐴𝑥)) → 𝐴𝑥)
2827adantlr 454 . . . . . . . . . 10 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝐴𝑥)
2926, 28eqeltrd 2130 . . . . . . . . 9 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧𝑥)
3029exlimiv 1505 . . . . . . . 8 (∃𝑦((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧𝑥)
3125, 30syl 14 . . . . . . 7 ((∃𝑦(𝜑𝑧 = 𝐴) ∧ ∀𝑦(𝜑𝐴𝑥)) → 𝑧𝑥)
3231ex 112 . . . . . 6 (∃𝑦(𝜑𝑧 = 𝐴) → (∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
3332alrimiv 1770 . . . . 5 (∃𝑦(𝜑𝑧 = 𝐴) → ∀𝑥(∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
34 vex 2577 . . . . . 6 𝑧 ∈ V
3534elintab 3653 . . . . 5 (𝑧 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ↔ ∀𝑥(∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
3633, 35sylibr 141 . . . 4 (∃𝑦(𝜑𝑧 = 𝐴) → 𝑧 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)})
3736abssi 3042 . . 3 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ⊆ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)}
3824, 37eqssi 2988 . 2 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
3938, 4eqtri 2076 1 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1257   = wceq 1259  wex 1397  wcel 1409  {cab 2042  Vcvv 2574  [wsbc 2786  wss 2944   cint 3642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2787  df-in 2951  df-ss 2958  df-int 3643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator