![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intexrabim | GIF version |
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexrabim | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexabim 3935 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
2 | df-rex 2355 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rab 2358 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
4 | 3 | inteqi 3648 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
5 | 4 | eleq1i 2145 | . 2 ⊢ (∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
6 | 1, 2, 5 | 3imtr4i 199 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1422 ∈ wcel 1434 {cab 2068 ∃wrex 2350 {crab 2353 Vcvv 2602 ∩ cint 3644 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-in 2980 df-ss 2987 df-int 3645 |
This theorem is referenced by: cardcl 6509 isnumi 6510 cardval3ex 6513 |
Copyright terms: Public domain | W3C validator |