![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intsng | GIF version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3420 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | inteqi 3648 | . 2 ⊢ ∩ {𝐴} = ∩ {𝐴, 𝐴} |
3 | intprg 3677 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) | |
4 | 3 | anidms 389 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = (𝐴 ∩ 𝐴)) |
5 | inidm 3182 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
6 | 4, 5 | syl6eq 2130 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴, 𝐴} = 𝐴) |
7 | 2, 6 | syl5eq 2126 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 ∩ cin 2973 {csn 3406 {cpr 3407 ∩ cint 3644 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-v 2604 df-un 2978 df-in 2980 df-sn 3412 df-pr 3413 df-int 3645 |
This theorem is referenced by: intsn 3679 op1stbg 4236 riinint 4621 |
Copyright terms: Public domain | W3C validator |