ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisj GIF version

Theorem invdisj 3784
Description: If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
invdisj (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥Disj 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem invdisj
StepHypRef Expression
1 nfra2xy 2379 . . 3 𝑦𝑥𝐴𝑦𝐵 𝐶 = 𝑥
2 df-ral 2326 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥))
3 rsp 2384 . . . . . . . . 9 (∀𝑦𝐵 𝐶 = 𝑥 → (𝑦𝐵𝐶 = 𝑥))
4 eqcom 2056 . . . . . . . . 9 (𝐶 = 𝑥𝑥 = 𝐶)
53, 4syl6ib 154 . . . . . . . 8 (∀𝑦𝐵 𝐶 = 𝑥 → (𝑦𝐵𝑥 = 𝐶))
65imim2i 12 . . . . . . 7 ((𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → (𝑥𝐴 → (𝑦𝐵𝑥 = 𝐶)))
76impd 246 . . . . . 6 ((𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → ((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
87alimi 1358 . . . . 5 (∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → ∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
92, 8sylbi 118 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
10 mo2icl 2740 . . . 4 (∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐵))
119, 10syl 14 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∃*𝑥(𝑥𝐴𝑦𝐵))
121, 11alrimi 1429 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
13 dfdisj2 3772 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
1412, 13sylibr 141 1 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥Disj 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1255   = wceq 1257  wcel 1407  ∃*wmo 1915  wral 2321  Disj wdisj 3770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rmo 2329  df-v 2574  df-disj 3771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator