ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof GIF version

Theorem ioof 9722
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9659 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 9686 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 df-ov 5745 . . . . . . 7 (𝑥(,)𝑦) = ((,)‘⟨𝑥, 𝑦⟩)
4 iooex 9658 . . . . . . . 8 (,) ∈ V
5 vex 2663 . . . . . . . . 9 𝑥 ∈ V
6 vex 2663 . . . . . . . . 9 𝑦 ∈ V
75, 6opex 4121 . . . . . . . 8 𝑥, 𝑦⟩ ∈ V
84, 7fvex 5409 . . . . . . 7 ((,)‘⟨𝑥, 𝑦⟩) ∈ V
93, 8eqeltri 2190 . . . . . 6 (𝑥(,)𝑦) ∈ V
109elpw 3486 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
112, 10mpbir 145 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
121, 11syl6eqelr 2209 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
1312rgen2a 2463 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
14 df-ioo 9643 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
1514fmpo 6067 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
1613, 15mpbi 144 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff set class
Syntax hints:  wa 103  wcel 1465  wral 2393  {crab 2397  Vcvv 2660  wss 3041  𝒫 cpw 3480  cop 3500   class class class wbr 3899   × cxp 4507  wf 5089  cfv 5093  (class class class)co 5742  cr 7587  *cxr 7767   < clt 7768  (,)cioo 9639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-ioo 9643
This theorem is referenced by:  unirnioo  9724  dfioo2  9725  ioorebasg  9726  qtopbasss  12617  retopbas  12619  tgioo  12642  tgqioo  12643
  Copyright terms: Public domain W3C validator