![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioom | GIF version |
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.) |
Ref | Expression |
---|---|
ioom | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 8998 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimpi 118 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
3 | 2 | simpld 110 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*)) |
4 | 3 | simp1d 951 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*) |
5 | 3 | simp3d 953 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*) |
6 | 3 | simp2d 952 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*) |
7 | 2 | simprd 112 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
8 | 7 | simpld 110 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
9 | 7 | simprd 112 | . . . . 5 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
10 | 4, 5, 6, 8, 9 | xrlttrd 8944 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵) |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
12 | 11 | exlimdv 1741 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐵)) |
13 | qbtwnxr 9333 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
14 | df-rex 2355 | . . . . 5 ⊢ (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | |
15 | 13, 14 | sylib 120 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
16 | simpl1 942 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 ∈ ℝ*) | |
17 | simpl2 943 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐵 ∈ ℝ*) | |
18 | qre 8780 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
19 | 18 | ad2antrl 474 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ) |
20 | 19 | rexrd 7219 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ ℝ*) |
21 | simprrl 506 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝐴 < 𝑥) | |
22 | simprrr 507 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 < 𝐵) | |
23 | 1 | biimpri 131 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
24 | 16, 17, 20, 21, 22, 23 | syl32anc 1178 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) → 𝑥 ∈ (𝐴(,)𝐵)) |
25 | 24 | ex 113 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))) |
26 | 25 | eximdv 1802 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (∃𝑥(𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
27 | 15, 26 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) |
28 | 27 | 3expia 1141 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))) |
29 | 12, 28 | impbid 127 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 ∃wex 1422 ∈ wcel 1434 ∃wrex 2350 class class class wbr 3787 (class class class)co 5537 ℝcr 7031 ℝ*cxr 7203 < clt 7204 ℚcq 8774 (,)cioo 8976 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 ax-pre-mulext 7145 ax-arch 7146 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-iun 3682 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-po 4053 df-iso 4054 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-1st 5792 df-2nd 5793 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 df-div 7817 df-inn 8096 df-2 8154 df-n0 8345 df-z 8422 df-uz 8690 df-q 8775 df-rp 8805 df-ioo 8980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |