ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioorebasg GIF version

Theorem ioorebasg 9151
Description: Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.)
Assertion
Ref Expression
ioorebasg ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))

Proof of Theorem ioorebasg
StepHypRef Expression
1 ioof 9147 . . 3 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 5098 . . 3 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
31, 2ax-mp 7 . 2 (,) Fn (ℝ* × ℝ*)
4 fnovrn 5701 . 2 (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
53, 4mp3an1 1256 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1434  𝒫 cpw 3401   × cxp 4390  ran crn 4393   Fn wfn 4948  wf 4949  (class class class)co 5565  cr 7119  *cxr 7291  (,)cioo 9064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-pre-ltirr 7227  ax-pre-ltwlin 7228  ax-pre-lttrn 7229
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-id 4077  df-po 4080  df-iso 4081  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-fv 4961  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-ioo 9068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator