ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabi GIF version

Theorem iotabi 5097
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))

Proof of Theorem iotabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abbi 2253 . . . . . 6 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
21biimpi 119 . . . . 5 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
32eqeq1d 2148 . . . 4 (∀𝑥(𝜑𝜓) → ({𝑥𝜑} = {𝑧} ↔ {𝑥𝜓} = {𝑧}))
43abbidv 2257 . . 3 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
54unieqd 3747 . 2 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
6 df-iota 5088 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 5088 . 2 (℩𝑥𝜓) = {𝑧 ∣ {𝑥𝜓} = {𝑧}}
85, 6, 73eqtr4g 2197 1 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1329   = wceq 1331  {cab 2125  {csn 3527   cuni 3736  cio 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-uni 3737  df-iota 5088
This theorem is referenced by:  iotabidv  5109  iotabii  5110  eusvobj1  5761
  Copyright terms: Public domain W3C validator