![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotauni | GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iotauni | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1946 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | iotaval 4929 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
3 | uniabio 4928 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑥 ∣ 𝜑} = 𝑧) | |
4 | 2, 3 | eqtr4d 2118 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
5 | 4 | exlimiv 1530 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
6 | 1, 5 | sylbi 119 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 = wceq 1285 ∃wex 1422 ∃!weu 1943 {cab 2069 ∪ cuni 3622 ℩cio 4916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-v 2612 df-sbc 2826 df-un 2987 df-sn 3423 df-pr 3424 df-uni 3623 df-iota 4918 |
This theorem is referenced by: iotaint 4931 fveu 5222 riotauni 5526 |
Copyright terms: Public domain | W3C validator |