ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmul GIF version

Theorem irrmul 9407
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3050 . . 3 (𝐴 ∈ (ℝ ∖ ℚ) ↔ (𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ))
2 qre 9385 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
3 remulcl 7716 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
42, 3sylan2 284 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℝ)
54ad2ant2r 500 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℝ)
6 qdivcl 9403 . . . . . . . . . . . . 13 (((𝐴 · 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
763expb 1167 . . . . . . . . . . . 12 (((𝐴 · 𝐵) ∈ ℚ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ)
87expcom 115 . . . . . . . . . . 11 ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
98adantl 275 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → ((𝐴 · 𝐵) / 𝐵) ∈ ℚ))
10 recn 7721 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
11103ad2ant1 987 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
12 qcn 9394 . . . . . . . . . . . . . 14 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
13123ad2ant2 988 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
14 simp3 968 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
15 0z 9033 . . . . . . . . . . . . . . . . 17 0 ∈ ℤ
16 zq 9386 . . . . . . . . . . . . . . . . 17 (0 ∈ ℤ → 0 ∈ ℚ)
1715, 16ax-mp 5 . . . . . . . . . . . . . . . 16 0 ∈ ℚ
18 qapne 9399 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
1917, 18mpan2 421 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → (𝐵 # 0 ↔ 𝐵 ≠ 0))
20193ad2ant2 988 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
2114, 20mpbird 166 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → 𝐵 # 0)
2211, 13, 21divcanap4d 8524 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
23223expb 1167 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2423eleq1d 2186 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝐴 · 𝐵) / 𝐵) ∈ ℚ ↔ 𝐴 ∈ ℚ))
259, 24sylibd 148 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℚ → 𝐴 ∈ ℚ))
2625con3d 605 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ))
2726ex 114 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (¬ 𝐴 ∈ ℚ → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2827com23 78 . . . . . 6 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ → ((𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ¬ (𝐴 · 𝐵) ∈ ℚ)))
2928imp31 254 . . . . 5 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ¬ (𝐴 · 𝐵) ∈ ℚ)
305, 29jca 304 . . . 4 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
31303impb 1162 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
321, 31syl3an1b 1237 . 2 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
33 eldif 3050 . 2 ((𝐴 · 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ ¬ (𝐴 · 𝐵) ∈ ℚ))
3432, 33sylibr 133 1 ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465  wne 2285  cdif 3038   class class class wbr 3899  (class class class)co 5742  cc 7586  cr 7587  0cc0 7588   · cmul 7593   # cap 8311   / cdiv 8400  cz 9022  cq 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-q 9380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator