![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseq1t | GIF version |
Description: Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 31-May-2020.) |
Ref | Expression |
---|---|
iseq1t.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iseq1t.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iseq1t.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
iseq1t.t | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Ref | Expression |
---|---|
iseq1t | ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑇)‘𝑀) = (𝐹‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseq1t.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | fveq2 5229 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
3 | 2 | eleq1d 2151 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
4 | iseq1t.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
5 | 4 | ralrimiva 2439 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
6 | uzid 8766 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
8 | 3, 5, 7 | rspcdva 2715 | . 2 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
9 | iseq1t.t | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) | |
10 | iseq1t.pl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
11 | 4, 10 | iseqovex 9581 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
12 | iseqvalcbv 9583 | . 2 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
13 | 1, 12, 4, 10, 9 | iseqvalt 9584 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑇) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
14 | 1, 8, 9, 11, 12, 13 | frecuzrdg0t 9556 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑇)‘𝑀) = (𝐹‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 ⊆ wss 2982 〈cop 3419 ‘cfv 4952 (class class class)co 5563 ↦ cmpt2 5565 freccfrec 6059 1c1 7096 + caddc 7098 ℤcz 8484 ℤ≥cuz 8752 seqcseq 9573 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-0id 7198 ax-rnegex 7199 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-ltadd 7206 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-inn 8159 df-n0 8408 df-z 8485 df-uz 8753 df-iseq 9574 |
This theorem is referenced by: iseqsst 9594 |
Copyright terms: Public domain | W3C validator |