Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqcl GIF version

Theorem iseqcl 9077
 Description: Closure properties of the recursive sequence builder. (Contributed by Jim Kingdon, 1-Jun-2020.)
Hypotheses
Ref Expression
iseqcl.1 (𝜑𝑁 ∈ (ℤ𝑀))
iseqcl.ex (𝜑𝑆𝑉)
iseqcl.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqcl.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqcl (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqcl
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqcl.1 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 8426 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
4 eqid 2040 . . 3 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀)
5 iseqcl.ex . . 3 (𝜑𝑆𝑉)
6 uzid 8435 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
73, 6syl 14 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
8 iseqcl.2 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
98ralrimiva 2389 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
10 fveq2 5141 . . . . . 6 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1110eleq1d 2106 . . . . 5 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
1211rspcv 2649 . . . 4 (𝑀 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 → (𝐹𝑀) ∈ 𝑆))
137, 9, 12sylc 56 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
14 iseqcl.3 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
158, 14iseqovex 9073 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
16 eqid 2040 . . 3 frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716, 8, 14iseqval 9074 . . 3 (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩))
183, 4, 5, 13, 15, 16, 17frecuzrdgcl 9053 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆)
191, 18mpdan 398 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∀wral 2303  ⟨cop 3375   ↦ cmpt 3815  ‘cfv 4865  (class class class)co 5475   ↦ cmpt2 5477  freccfrec 5940  1c1 6847   + caddc 6849  ℤcz 8193  ℤ≥cuz 8421  seqcseq 9065 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274  ax-cnex 6932  ax-resscn 6933  ax-1cn 6934  ax-1re 6935  ax-icn 6936  ax-addcl 6937  ax-addrcl 6938  ax-mulcl 6939  ax-addcom 6941  ax-addass 6943  ax-distr 6945  ax-i2m1 6946  ax-0id 6949  ax-rnegex 6950  ax-cnre 6952  ax-pre-ltirr 6953  ax-pre-ltwlin 6954  ax-pre-lttrn 6955  ax-pre-ltadd 6957 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-riota 5431  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-frec 5941  df-1o 5964  df-2o 5965  df-oadd 5968  df-omul 5969  df-er 6069  df-ec 6071  df-qs 6075  df-ni 6359  df-pli 6360  df-mi 6361  df-lti 6362  df-plpq 6399  df-mpq 6400  df-enq 6402  df-nqqs 6403  df-plqqs 6404  df-mqqs 6405  df-1nqqs 6406  df-rq 6407  df-ltnqqs 6408  df-enq0 6479  df-nq0 6480  df-0nq0 6481  df-plq0 6482  df-mq0 6483  df-inp 6521  df-i1p 6522  df-iplp 6523  df-iltp 6525  df-enr 6768  df-nr 6769  df-ltr 6772  df-0r 6773  df-1r 6774  df-0 6853  df-1 6854  df-r 6856  df-lt 6859  df-pnf 7018  df-mnf 7019  df-xr 7020  df-ltxr 7021  df-le 7022  df-sub 7140  df-neg 7141  df-inn 7867  df-n0 8130  df-z 8194  df-uz 8422  df-iseq 9066 This theorem is referenced by:  iseqf  9078  iseqp1  9079  isermono  9091  iseqsplit  9092  iseqcaopr2  9095  iseqid3  9099  iseqhomo  9102  iseqdistr  9103  serige0  9106  serile  9107  expivallem  9110  expival  9111  ialgrp1  9738
 Copyright terms: Public domain W3C validator