Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfclt GIF version

Theorem iseqfclt 9588
 Description: Range of the recursive sequence builder. (Contributed by Jim Kingdon, 26-Apr-2022.)
Hypotheses
Ref Expression
iseqfclt.1 𝑍 = (ℤ𝑀)
iseqfclt.2 (𝜑𝑀 ∈ ℤ)
iseqfclt.3 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
iseqfclt.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqfclt.t (𝜑𝑆𝑇)
Assertion
Ref Expression
iseqfclt (𝜑 → seq𝑀( + , 𝐹, 𝑇):𝑍𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑍   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem iseqfclt
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqfclt.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 fveq2 5229 . . . . 5 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2151 . . . 4 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 iseqfclt.3 . . . . 5 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2439 . . . 4 (𝜑 → ∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆)
6 uzid 8766 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
8 iseqfclt.1 . . . . 5 𝑍 = (ℤ𝑀)
97, 8syl6eleqr 2176 . . . 4 (𝜑𝑀𝑍)
103, 5, 9rspcdva 2715 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 iseqfclt.t . . 3 (𝜑𝑆𝑇)
12 simprl 498 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
13 simprr 499 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
14 iseqfclt.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1514caovclg 5704 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
1615adantlr 461 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
17 fveq2 5229 . . . . . . . 8 (𝑐 = (𝑥 + 1) → (𝐹𝑐) = (𝐹‘(𝑥 + 1)))
1817eleq1d 2151 . . . . . . 7 (𝑐 = (𝑥 + 1) → ((𝐹𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
19 fveq2 5229 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
2019eleq1d 2151 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑐) ∈ 𝑆))
2120cbvralv 2582 . . . . . . . . 9 (∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
225, 21sylib 120 . . . . . . . 8 (𝜑 → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
2322adantr 270 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
24 peano2uz 8804 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
2524, 8syl6eleqr 2176 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ 𝑍)
2612, 25syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ 𝑍)
2718, 23, 26rspcdva 2715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2816, 13, 27caovcld 5705 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
29 oveq1 5570 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
3029fveq2d 5233 . . . . . . 7 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3130oveq2d 5579 . . . . . 6 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
32 oveq1 5570 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
33 eqid 2083 . . . . . 6 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3431, 32, 33ovmpt2g 5686 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3512, 13, 28, 34syl3anc 1170 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3635, 28eqeltrd 2159 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
37 iseqvalcbv 9583 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡𝑇 ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
388eleq2i 2149 . . . . 5 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
3938, 4sylan2br 282 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
401, 37, 39, 14, 11iseqvalt 9584 . . 3 (𝜑 → seq𝑀( + , 𝐹, 𝑇) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡𝑇 ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
411, 10, 11, 36, 37, 40frecuzrdgtclt 9555 . 2 (𝜑 → seq𝑀( + , 𝐹, 𝑇):(ℤ𝑀)⟶𝑆)
428a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
4342feq2d 5086 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑇):𝑍𝑆 ↔ seq𝑀( + , 𝐹, 𝑇):(ℤ𝑀)⟶𝑆))
4441, 43mpbird 165 1 (𝜑 → seq𝑀( + , 𝐹, 𝑇):𝑍𝑆)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  ∀wral 2353   ⊆ wss 2982  ⟨cop 3419  ⟶wf 4948  ‘cfv 4952  (class class class)co 5563   ↦ cmpt2 5565  freccfrec 6059  1c1 7096   + caddc 7098  ℤcz 8484  ℤ≥cuz 8752  seqcseq 9573 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-iseq 9574 This theorem is referenced by:  iseqp1t  9591  iseqsst  9594
 Copyright terms: Public domain W3C validator