![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqfeq2 | GIF version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
Ref | Expression |
---|---|
iseqfveq2.1 | ⊢ (φ → 𝐾 ∈ (ℤ≥‘𝑀)) |
iseqfveq2.2 | ⊢ (φ → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺‘𝐾)) |
iseqfveq2.s | ⊢ (φ → 𝑆 ∈ 𝑉) |
iseqfveq2.f | ⊢ ((φ ∧ x ∈ (ℤ≥‘𝑀)) → (𝐹‘x) ∈ 𝑆) |
iseqfveq2.g | ⊢ ((φ ∧ x ∈ (ℤ≥‘𝐾)) → (𝐺‘x) ∈ 𝑆) |
iseqfveq2.pl | ⊢ ((φ ∧ (x ∈ 𝑆 ∧ y ∈ 𝑆)) → (x + y) ∈ 𝑆) |
iseqfeq2.4 | ⊢ ((φ ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
iseqfeq2 | ⊢ (φ → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺, 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqfveq2.1 | . . . . 5 ⊢ (φ → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 8254 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (φ → 𝑀 ∈ ℤ) |
4 | iseqfveq2.s | . . . 4 ⊢ (φ → 𝑆 ∈ 𝑉) | |
5 | iseqfveq2.f | . . . 4 ⊢ ((φ ∧ x ∈ (ℤ≥‘𝑀)) → (𝐹‘x) ∈ 𝑆) | |
6 | iseqfveq2.pl | . . . 4 ⊢ ((φ ∧ (x ∈ 𝑆 ∧ y ∈ 𝑆)) → (x + y) ∈ 𝑆) | |
7 | 3, 4, 5, 6 | iseqfn 8901 | . . 3 ⊢ (φ → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ≥‘𝑀)) |
8 | uzss 8269 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) | |
9 | 1, 8 | syl 14 | . . 3 ⊢ (φ → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) |
10 | fnssres 4955 | . . 3 ⊢ ((seq𝑀( + , 𝐹, 𝑆) Fn (ℤ≥‘𝑀) ∧ (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) | |
11 | 7, 9, 10 | syl2anc 391 | . 2 ⊢ (φ → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) |
12 | eluzelz 8258 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
13 | 1, 12 | syl 14 | . . 3 ⊢ (φ → 𝐾 ∈ ℤ) |
14 | iseqfveq2.g | . . 3 ⊢ ((φ ∧ x ∈ (ℤ≥‘𝐾)) → (𝐺‘x) ∈ 𝑆) | |
15 | 13, 4, 14, 6 | iseqfn 8901 | . 2 ⊢ (φ → seq𝐾( + , 𝐺, 𝑆) Fn (ℤ≥‘𝐾)) |
16 | fvres 5141 | . . . 4 ⊢ (z ∈ (ℤ≥‘𝐾) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾))‘z) = (seq𝑀( + , 𝐹, 𝑆)‘z)) | |
17 | 16 | adantl 262 | . . 3 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾))‘z) = (seq𝑀( + , 𝐹, 𝑆)‘z)) |
18 | 1 | adantr 261 | . . . 4 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
19 | iseqfveq2.2 | . . . . 5 ⊢ (φ → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺‘𝐾)) | |
20 | 19 | adantr 261 | . . . 4 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺‘𝐾)) |
21 | 4 | adantr 261 | . . . 4 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → 𝑆 ∈ 𝑉) |
22 | 5 | adantlr 446 | . . . 4 ⊢ (((φ ∧ z ∈ (ℤ≥‘𝐾)) ∧ x ∈ (ℤ≥‘𝑀)) → (𝐹‘x) ∈ 𝑆) |
23 | 14 | adantlr 446 | . . . 4 ⊢ (((φ ∧ z ∈ (ℤ≥‘𝐾)) ∧ x ∈ (ℤ≥‘𝐾)) → (𝐺‘x) ∈ 𝑆) |
24 | 6 | adantlr 446 | . . . 4 ⊢ (((φ ∧ z ∈ (ℤ≥‘𝐾)) ∧ (x ∈ 𝑆 ∧ y ∈ 𝑆)) → (x + y) ∈ 𝑆) |
25 | simpr 103 | . . . 4 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → z ∈ (ℤ≥‘𝐾)) | |
26 | elfzuz 8656 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐾 + 1)...z) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
27 | iseqfeq2.4 | . . . . . 6 ⊢ ((φ ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
28 | 26, 27 | sylan2 270 | . . . . 5 ⊢ ((φ ∧ 𝑘 ∈ ((𝐾 + 1)...z)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
29 | 28 | adantlr 446 | . . . 4 ⊢ (((φ ∧ z ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...z)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
30 | 18, 20, 21, 22, 23, 24, 25, 29 | iseqfveq2 8905 | . . 3 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘z) = (seq𝐾( + , 𝐺, 𝑆)‘z)) |
31 | 17, 30 | eqtrd 2069 | . 2 ⊢ ((φ ∧ z ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾))‘z) = (seq𝐾( + , 𝐺, 𝑆)‘z)) |
32 | 11, 15, 31 | eqfnfvd 5211 | 1 ⊢ (φ → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺, 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∈ wcel 1390 ⊆ wss 2911 ↾ cres 4290 Fn wfn 4840 ‘cfv 4845 (class class class)co 5455 1c1 6712 + caddc 6714 ℤcz 8021 ℤ≥cuz 8249 ...cfz 8644 seqcseq 8892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-coll 3863 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-setind 4220 ax-iinf 4254 ax-cnex 6774 ax-resscn 6775 ax-1cn 6776 ax-1re 6777 ax-icn 6778 ax-addcl 6779 ax-addrcl 6780 ax-mulcl 6781 ax-addcom 6783 ax-addass 6785 ax-distr 6787 ax-i2m1 6788 ax-0id 6791 ax-rnegex 6792 ax-cnre 6794 ax-pre-ltirr 6795 ax-pre-ltwlin 6796 ax-pre-lttrn 6797 ax-pre-ltadd 6799 |
This theorem depends on definitions: df-bi 110 df-dc 742 df-3or 885 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-nel 2204 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-csb 2847 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-int 3607 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-tr 3846 df-eprel 4017 df-id 4021 df-po 4024 df-iso 4025 df-iord 4069 df-on 4071 df-suc 4074 df-iom 4257 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-f 4849 df-f1 4850 df-fo 4851 df-f1o 4852 df-fv 4853 df-riota 5411 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-1st 5709 df-2nd 5710 df-recs 5861 df-irdg 5897 df-frec 5918 df-1o 5940 df-2o 5941 df-oadd 5944 df-omul 5945 df-er 6042 df-ec 6044 df-qs 6048 df-ni 6288 df-pli 6289 df-mi 6290 df-lti 6291 df-plpq 6328 df-mpq 6329 df-enq 6331 df-nqqs 6332 df-plqqs 6333 df-mqqs 6334 df-1nqqs 6335 df-rq 6336 df-ltnqqs 6337 df-enq0 6407 df-nq0 6408 df-0nq0 6409 df-plq0 6410 df-mq0 6411 df-inp 6449 df-i1p 6450 df-iplp 6451 df-iltp 6453 df-enr 6654 df-nr 6655 df-ltr 6658 df-0r 6659 df-1r 6660 df-0 6718 df-1 6719 df-r 6721 df-lt 6724 df-pnf 6859 df-mnf 6860 df-xr 6861 df-ltxr 6862 df-le 6863 df-sub 6981 df-neg 6982 df-inn 7696 df-n0 7958 df-z 8022 df-uz 8250 df-fz 8645 df-iseq 8893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |