Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfveq GIF version

Theorem iseqfveq 9394
 Description: Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq.1 (𝜑𝑁 ∈ (ℤ𝑀))
iseqfveq.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
iseqfveq.s (𝜑𝑆𝑉)
iseqfveq.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqfveq.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqfveq.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqfveq (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐺, 𝑆)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem iseqfveq
StepHypRef Expression
1 iseqfveq.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 8574 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
4 uzid 8583 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 14 . 2 (𝜑𝑀 ∈ (ℤ𝑀))
6 iseqfveq.s . . . 4 (𝜑𝑆𝑉)
7 iseqfveq.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
8 iseqfveq.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
93, 6, 7, 8iseq1 9386 . . 3 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
10 eluzfz1 8997 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
111, 10syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
12 iseqfveq.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
1312ralrimiva 2409 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘))
14 fveq2 5206 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
15 fveq2 5206 . . . . . 6 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
1614, 15eqeq12d 2070 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑀) = (𝐺𝑀)))
1716rspcv 2669 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘) → (𝐹𝑀) = (𝐺𝑀)))
1811, 13, 17sylc 60 . . 3 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
199, 18eqtrd 2088 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐺𝑀))
20 iseqfveq.g . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
21 fzp1ss 9037 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
223, 21syl 14 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2322sselda 2973 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
2423, 12syldan 270 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
255, 19, 6, 7, 20, 8, 1, 24iseqfveq2 9392 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐺, 𝑆)‘𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  ∀wral 2323   ⊆ wss 2945  ‘cfv 4930  (class class class)co 5540  1c1 6948   + caddc 6950  ℤcz 8302  ℤ≥cuz 8569  ...cfz 8976  seqcseq 9375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-fz 8977  df-iseq 9376 This theorem is referenced by:  iseqfeq  9395
 Copyright terms: Public domain W3C validator