Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqhomo GIF version

Theorem iseqhomo 9102
 Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 21-Aug-2021.)
Hypotheses
Ref Expression
iseqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqhomo.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqhomo.s (𝜑𝑆𝑉)
iseqhomo.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqhomo.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
iseqhomo.5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
iseqhomo.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqhomo.qcl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqhomo (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦   𝑦,𝐺
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqhomo
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqhomo.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 fveq2 5141 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
32fveq2d 5145 . . . . 5 (𝑤 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)))
4 fveq2 5141 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
53, 4eqeq12d 2054 . . . 4 (𝑤 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
65imbi2d 219 . . 3 (𝑤 = 𝑀 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))))
7 fveq2 5141 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
87fveq2d 5145 . . . . 5 (𝑤 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
9 fveq2 5141 . . . . 5 (𝑤 = 𝑛 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))
108, 9eqeq12d 2054 . . . 4 (𝑤 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)))
1110imbi2d 219 . . 3 (𝑤 = 𝑛 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))))
12 fveq2 5141 . . . . . 6 (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
1312fveq2d 5145 . . . . 5 (𝑤 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))
14 fveq2 5141 . . . . 5 (𝑤 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))
1513, 14eqeq12d 2054 . . . 4 (𝑤 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
1615imbi2d 219 . . 3 (𝑤 = (𝑛 + 1) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
17 fveq2 5141 . . . . . 6 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1817fveq2d 5145 . . . . 5 (𝑤 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)))
19 fveq2 5141 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
2018, 19eqeq12d 2054 . . . 4 (𝑤 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
2120imbi2d 219 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))))
22 eluzel2 8426 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
231, 22syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
24 uzid 8435 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2523, 24syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
26 iseqhomo.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
2726ralrimiva 2389 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
28 fveq2 5141 . . . . . . . . 9 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2928fveq2d 5145 . . . . . . . 8 (𝑥 = 𝑀 → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹𝑀)))
30 fveq2 5141 . . . . . . . 8 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
3129, 30eqeq12d 2054 . . . . . . 7 (𝑥 = 𝑀 → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
3231rspcv 2649 . . . . . 6 (𝑀 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥) → (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
3325, 27, 32sylc 56 . . . . 5 (𝜑 → (𝐻‘(𝐹𝑀)) = (𝐺𝑀))
34 iseqhomo.s . . . . . . 7 (𝜑𝑆𝑉)
35 iseqhomo.2 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
36 iseqhomo.1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3723, 34, 35, 36iseq1 9076 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
3837fveq2d 5145 . . . . 5 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (𝐻‘(𝐹𝑀)))
39 iseqhomo.g . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
40 iseqhomo.qcl . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
4123, 34, 39, 40iseq1 9076 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀) = (𝐺𝑀))
4233, 38, 413eqtr4d 2082 . . . 4 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
4342a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
44 oveq1 5482 . . . . . 6 ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
45 simpr 103 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4634adantr 261 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑆𝑉)
4735adantlr 446 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4836adantlr 446 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4945, 46, 47, 48iseqp1 9079 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
5049fveq2d 5145 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
51 iseqhomo.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5251ralrimivva 2398 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5352adantr 261 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5445, 46, 47, 48iseqcl 9077 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆)
55 peano2uz 8474 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5645, 55syl 14 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ (ℤ𝑀))
5735ralrimiva 2389 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
5857adantr 261 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
59 fveq2 5141 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
6059eleq1d 2106 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6160rspcv 2649 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 → (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6256, 58, 61sylc 56 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
63 oveq1 5482 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦))
6463fveq2d 5145 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)))
65 fveq2 5141 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻𝑥) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
6665oveq1d 5490 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻𝑥)𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)))
6764, 66eqeq12d 2054 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦))))
68 oveq2 5483 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6968fveq2d 5145 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
70 fveq2 5141 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻𝑦) = (𝐻‘(𝐹‘(𝑛 + 1))))
7170oveq2d 5491 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
7269, 71eqeq12d 2054 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7367, 72rspc2v 2659 . . . . . . . . . 10 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7454, 62, 73syl2anc 391 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7553, 74mpd 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
7627adantr 261 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
7759fveq2d 5145 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1))))
78 fveq2 5141 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐺𝑥) = (𝐺‘(𝑛 + 1)))
7977, 78eqeq12d 2054 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8079rspcv 2649 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8156, 76, 80sylc 56 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))
8281oveq2d 5491 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
8350, 75, 823eqtrd 2076 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
8439adantlr 446 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
8540adantlr 446 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
8645, 46, 84, 85iseqp1 9079 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
8783, 86eqeq12d 2054 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))))
8844, 87syl5ibr 145 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
8988expcom 109 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
9089a2d 23 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
916, 11, 16, 21, 43, 90uzind4 8479 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
921, 91mpcom 32 1 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∀wral 2303  ‘cfv 4865  (class class class)co 5475  1c1 6847   + caddc 6849  ℤcz 8193  ℤ≥cuz 8421  seqcseq 9065 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274  ax-cnex 6932  ax-resscn 6933  ax-1cn 6934  ax-1re 6935  ax-icn 6936  ax-addcl 6937  ax-addrcl 6938  ax-mulcl 6939  ax-addcom 6941  ax-addass 6943  ax-distr 6945  ax-i2m1 6946  ax-0id 6949  ax-rnegex 6950  ax-cnre 6952  ax-pre-ltirr 6953  ax-pre-ltwlin 6954  ax-pre-lttrn 6955  ax-pre-ltadd 6957 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-riota 5431  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-frec 5941  df-1o 5964  df-2o 5965  df-oadd 5968  df-omul 5969  df-er 6069  df-ec 6071  df-qs 6075  df-ni 6359  df-pli 6360  df-mi 6361  df-lti 6362  df-plpq 6399  df-mpq 6400  df-enq 6402  df-nqqs 6403  df-plqqs 6404  df-mqqs 6405  df-1nqqs 6406  df-rq 6407  df-ltnqqs 6408  df-enq0 6479  df-nq0 6480  df-0nq0 6481  df-plq0 6482  df-mq0 6483  df-inp 6521  df-i1p 6522  df-iplp 6523  df-iltp 6525  df-enr 6768  df-nr 6769  df-ltr 6772  df-0r 6773  df-1r 6774  df-0 6853  df-1 6854  df-r 6856  df-lt 6859  df-pnf 7018  df-mnf 7019  df-xr 7020  df-ltxr 7021  df-le 7022  df-sub 7140  df-neg 7141  df-inn 7867  df-n0 8130  df-z 8194  df-uz 8422  df-iseq 9066 This theorem is referenced by:  iseqdistr  9103
 Copyright terms: Public domain W3C validator