ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid GIF version

Theorem iseqid 9411
Description: Discard the first few terms of a sequence that starts with all zeroes (or whatever the identity 𝑍 is for operation +). (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
iseqid.2 (𝜑𝑍𝑆)
iseqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
iseqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
iseqid.s (𝜑𝑆𝑉)
iseqid.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqid.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqid (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹, 𝑆))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 8578 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 iseqid.s . . . . 5 (𝜑𝑆𝑉)
5 simpr 107 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑥 ∈ (ℤ𝑁))
61adantr 265 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
7 uztrn 8585 . . . . . . 7 ((𝑥 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
85, 6, 7syl2anc 397 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑥 ∈ (ℤ𝑀))
9 iseqid.f . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
108, 9syldan 270 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑁)) → (𝐹𝑥) ∈ 𝑆)
11 iseqid.cl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
123, 4, 10, 11iseq1 9386 . . . 4 (𝜑 → (seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
13 iseqeq1 9378 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑆))
1413fveq1d 5208 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1514eqeq1d 2064 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
1612, 15syl5ibcom 148 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
17 eluzel2 8574 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
181, 17syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918adantr 265 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
20 simpr 107 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
214adantr 265 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑆𝑉)
229adantlr 454 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2311adantlr 454 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2419, 20, 21, 22, 23iseqm1 9391 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))
25 iseqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
26 iseqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
2726ralrimiva 2409 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
28 oveq2 5548 . . . . . . . . . . 11 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
29 id 19 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = 𝑍)
3028, 29eqeq12d 2070 . . . . . . . . . 10 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
3130rspcv 2669 . . . . . . . . 9 (𝑍𝑆 → (∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥 → (𝑍 + 𝑍) = 𝑍))
3225, 27, 31sylc 60 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
3332adantr 265 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
34 eluzp1m1 8592 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
3518, 34sylan 271 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
36 iseqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
3736adantlr 454 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
3825adantr 265 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑍𝑆)
3933, 35, 37, 38, 21, 22, 23iseqid3s 9410 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) = 𝑍)
4039oveq1d 5555 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
41 iseqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
4241adantr 265 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
4327adantr 265 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
44 oveq2 5548 . . . . . . . 8 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
45 id 19 . . . . . . . 8 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
4644, 45eqeq12d 2070 . . . . . . 7 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
4746rspcv 2669 . . . . . 6 ((𝐹𝑁) ∈ 𝑆 → (∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥 → (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
4842, 43, 47sylc 60 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
4924, 40, 483eqtrd 2092 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
5049ex 112 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
51 uzp1 8602 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
521, 51syl 14 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
5316, 50, 52mpjaod 648 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
54 eqidd 2057 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) = (𝐹𝑘))
551, 53, 4, 9, 10, 11, 54iseqfeq2 9393 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wo 639   = wceq 1259  wcel 1409  wral 2323  cres 4375  cfv 4930  (class class class)co 5540  1c1 6948   + caddc 6950  cmin 7245  cz 8302  cuz 8569  ...cfz 8976  seqcseq 9375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-fz 8977  df-fzo 9102  df-iseq 9376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator