Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqm1 GIF version

Theorem iseqm1 9543
 Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
iseqm1.m (𝜑𝑀 ∈ ℤ)
iseqm1.n (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
iseqm1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqm1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqm1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem iseqm1
StepHypRef Expression
1 iseqm1.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 iseqm1.n . . . 4 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
3 eluzp1m1 8723 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
41, 2, 3syl2anc 403 . . 3 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
5 iseqm1.f . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 iseqm1.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
74, 5, 6iseqp1 9538 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘((𝑁 − 1) + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))))
8 eluzelcn 8711 . . . . 5 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ℂ)
9 ax-1cn 7131 . . . . 5 1 ∈ ℂ
10 npcan 7384 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
118, 9, 10sylancl 404 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → ((𝑁 − 1) + 1) = 𝑁)
122, 11syl 14 . . 3 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1312fveq2d 5213 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘((𝑁 − 1) + 1)) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1412fveq2d 5213 . . 3 (𝜑 → (𝐹‘((𝑁 − 1) + 1)) = (𝐹𝑁))
1514oveq2d 5559 . 2 (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))
167, 13, 153eqtr3d 2122 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  ‘cfv 4932  (class class class)co 5543  ℂcc 7041  1c1 7044   + caddc 7046   − cmin 7346  ℤcz 8432  ℤ≥cuz 8700  seqcseq 9521 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-iseq 9522 This theorem is referenced by:  iseqid  9563  iseqz  9566  bcn2  9788  serif0  10327
 Copyright terms: Public domain W3C validator