Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqss GIF version

Theorem iseqss 9390
 Description: Specifying a larger universe for seq. As long as 𝐹 and + are closed over 𝑆, then any set which contains 𝑆 can be used as the last argument to seq. This theorem does not allow 𝑇 to be a proper class, however. It also currently requires that + be closed over 𝑇 (as well as 𝑆). (Contributed by Jim Kingdon, 18-Aug-2021.)
Hypotheses
Ref Expression
iseqss.m (𝜑𝑀 ∈ ℤ)
iseqss.t (𝜑𝑇𝑉)
iseqss.ss (𝜑𝑆𝑇)
iseqss.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqss.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqss.plt ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
Assertion
Ref Expression
iseqss (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqss
Dummy variables 𝑘 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqss.m . . 3 (𝜑𝑀 ∈ ℤ)
2 iseqss.t . . . 4 (𝜑𝑇𝑉)
3 iseqss.ss . . . 4 (𝜑𝑆𝑇)
42, 3ssexd 3925 . . 3 (𝜑𝑆 ∈ V)
5 iseqss.f . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 iseqss.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6iseqfn 9385 . 2 (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀))
83sseld 2972 . . . . 5 (𝜑 → ((𝐹𝑥) ∈ 𝑆 → (𝐹𝑥) ∈ 𝑇))
98adantr 265 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹𝑥) ∈ 𝑆 → (𝐹𝑥) ∈ 𝑇))
105, 9mpd 13 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
11 iseqss.plt . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
121, 2, 10, 11iseqfn 9385 . 2 (𝜑 → seq𝑀( + , 𝐹, 𝑇) Fn (ℤ𝑀))
13 fveq2 5206 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
14 fveq2 5206 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))
1513, 14eqeq12d 2070 . . . . 5 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀)))
1615imbi2d 223 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))))
17 fveq2 5206 . . . . . 6 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑘))
18 fveq2 5206 . . . . . 6 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘))
1917, 18eqeq12d 2070 . . . . 5 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘)))
2019imbi2d 223 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘))))
21 fveq2 5206 . . . . . 6 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)))
22 fveq2 5206 . . . . . 6 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))
2321, 22eqeq12d 2070 . . . . 5 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1))))
2423imbi2d 223 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
25 fveq2 5206 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
26 fveq2 5206 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑇)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))
2725, 26eqeq12d 2070 . . . . 5 (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛)))
2827imbi2d 223 . . . 4 (𝑤 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑇)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))))
291, 4, 5, 6iseq1 9386 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
301, 2, 10, 11iseq1 9386 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑇)‘𝑀) = (𝐹𝑀))
3129, 30eqtr4d 2091 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀))
3231a1i 9 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq𝑀( + , 𝐹, 𝑇)‘𝑀)))
33 oveq1 5547 . . . . . . 7 ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1))))
34 simpr 107 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
354adantr 265 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑆 ∈ V)
365adantlr 454 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
376adantlr 454 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3834, 35, 36, 37iseqp1 9389 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
392adantr 265 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑇𝑉)
4010adantlr 454 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
4111adantlr 454 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
4234, 39, 40, 41iseqp1 9389 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1))))
4338, 42eqeq12d 2070 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀( + , 𝐹, 𝑇)‘𝑘) + (𝐹‘(𝑘 + 1)))))
4433, 43syl5ibr 149 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1))))
4544expcom 113 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
4645a2d 26 . . . 4 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = (seq𝑀( + , 𝐹, 𝑇)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = (seq𝑀( + , 𝐹, 𝑇)‘(𝑘 + 1)))))
4716, 20, 24, 28, 32, 46uzind4 8627 . . 3 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛)))
4847impcom 120 . 2 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq𝑀( + , 𝐹, 𝑇)‘𝑛))
497, 12, 48eqfnfvd 5296 1 (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  Vcvv 2574   ⊆ wss 2945  ‘cfv 4930  (class class class)co 5540  1c1 6948   + caddc 6950  ℤcz 8302  ℤ≥cuz 8569  seqcseq 9375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-iseq 9376 This theorem is referenced by:  serige0  9417  serile  9418  iserile  10093  climserile  10096
 Copyright terms: Public domain W3C validator