Step | Hyp | Ref
| Expression |
1 | | iseqvalt.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
3 | 2 | eleq1d 2151 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
4 | | iseqvalt.f |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
5 | 4 | ralrimiva 2439 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
6 | | uzid 8750 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
7 | 1, 6 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
8 | 3, 5, 7 | rspcdva 2716 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
9 | | iseqvalt.t |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
10 | | iseqvalt.pl |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
11 | 4, 10 | iseqovex 9565 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
12 | | iseqvalt.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) |
13 | 1, 8, 9, 11, 12 | frecuzrdgrclt 9533 |
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆)) |
14 | | ffn 5098 |
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆) → 𝑅 Fn ω) |
15 | 13, 14 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑅 Fn ω) |
16 | | 1st2nd2 5853 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) |
17 | 16 | adantl 271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 𝑢 = 〈(1st ‘𝑢), (2nd ‘𝑢)〉) |
18 | 17 | fveq2d 5234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) |
19 | | df-ov 5567 |
. . . . . . . . . 10
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) |
20 | 18, 19 | syl6eqr 2133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢))) |
21 | | xp1st 5844 |
. . . . . . . . . . 11
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) |
22 | 21 | adantl 271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (1st ‘𝑢) ∈
(ℤ≥‘𝑀)) |
23 | 9 | adantr 270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 𝑆 ⊆ 𝑇) |
24 | | xp2nd 5845 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
((ℤ≥‘𝑀) × 𝑆) → (2nd ‘𝑢) ∈ 𝑆) |
25 | 24 | adantl 271 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (2nd ‘𝑢) ∈ 𝑆) |
26 | 23, 25 | sseldd 3010 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (2nd ‘𝑢) ∈ 𝑇) |
27 | | peano2uz 8788 |
. . . . . . . . . . . 12
⊢
((1st ‘𝑢) ∈ (ℤ≥‘𝑀) → ((1st
‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) |
28 | 22, 27 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀)) |
29 | 10 | caovclg 5705 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
30 | 29 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
31 | | fveq2 5230 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((1st ‘𝑢) + 1) → (𝐹‘𝑥) = (𝐹‘((1st ‘𝑢) + 1))) |
32 | 31 | eleq1d 2151 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((1st ‘𝑢) + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝑆)) |
33 | 5 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
34 | 32, 33, 28 | rspcdva 2716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → (𝐹‘((1st ‘𝑢) + 1)) ∈ 𝑆) |
35 | 30, 25, 34 | caovcld 5706 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝑆) |
36 | | opelxpi 4423 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀) ∧ ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1))) ∈ 𝑆) → 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝑆)) |
37 | 28, 35, 36 | syl2anc 403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝑆)) |
38 | | oveq1 5571 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑥 + 1) = ((1st ‘𝑢) + 1)) |
39 | 38 | fveq2d 5234 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑢) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) |
40 | 39 | oveq2d 5580 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑢) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))) |
41 | 38, 40 | opeq12d 3599 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉) |
42 | | oveq1 5571 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑢) → (𝑦 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
43 | 42 | opeq2d 3598 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1), (𝑦 + (𝐹‘((1st ‘𝑢) + 1)))〉 =
〈((1st ‘𝑢) + 1), ((2nd ‘𝑢) + (𝐹‘((1st ‘𝑢) + 1)))〉) |
44 | | eqid 2083 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) |
45 | 41, 43, 44 | ovmpt2g 5687 |
. . . . . . . . . 10
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ 𝑇 ∧ 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) + 1)))〉
∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) |
46 | 22, 26, 37, 45 | syl3anc 1170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((2nd ‘𝑢)
+ (𝐹‘((1st
‘𝑢) +
1)))〉) |
47 | 20, 46 | eqtrd 2115 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))〉) |
48 | 47, 37 | eqeltrd 2159 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
49 | 48 | ralrimiva 2439 |
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
50 | | opelxpi 4423 |
. . . . . . 7
⊢ ((𝑀 ∈
(ℤ≥‘𝑀) ∧ (𝐹‘𝑀) ∈ 𝑆) → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
51 | 7, 8, 50 | syl2anc 403 |
. . . . . 6
⊢ (𝜑 → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
52 | 49, 51 | jca 300 |
. . . . 5
⊢ (𝜑 → (∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆))) |
53 | | frecfcl 6075 |
. . . . 5
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝑆)) |
54 | | ffn 5098 |
. . . . 5
⊢
(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉):ω⟶((ℤ≥‘𝑀) × 𝑆) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦
∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦
+ (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) |
55 | 52, 53, 54 | 3syl 17 |
. . . 4
⊢ (𝜑 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) Fn ω) |
56 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (𝑅‘𝑐) = (𝑅‘∅)) |
57 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) |
58 | 56, 57 | eqeq12d 2097 |
. . . . . . 7
⊢ (𝑐 = ∅ → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅))) |
59 | 58 | imbi2d 228 |
. . . . . 6
⊢ (𝑐 = ∅ → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)))) |
60 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (𝑅‘𝑐) = (𝑅‘𝑘)) |
61 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
62 | 60, 61 | eqeq12d 2097 |
. . . . . . 7
⊢ (𝑐 = 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
63 | 62 | imbi2d 228 |
. . . . . 6
⊢ (𝑐 = 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)))) |
64 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (𝑅‘𝑐) = (𝑅‘suc 𝑘)) |
65 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑘 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) |
66 | 64, 65 | eqeq12d 2097 |
. . . . . . 7
⊢ (𝑐 = suc 𝑘 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘))) |
67 | 66 | imbi2d 228 |
. . . . . 6
⊢ (𝑐 = suc 𝑘 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
68 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (𝑅‘𝑐) = (𝑅‘𝑛)) |
69 | | fveq2 5230 |
. . . . . . . 8
⊢ (𝑐 = 𝑛 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) |
70 | 68, 69 | eqeq12d 2097 |
. . . . . . 7
⊢ (𝑐 = 𝑛 → ((𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐) ↔ (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) |
71 | 70 | imbi2d 228 |
. . . . . 6
⊢ (𝑐 = 𝑛 → ((𝜑 → (𝑅‘𝑐) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑐)) ↔ (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)))) |
72 | 12 | fveq1i 5231 |
. . . . . . . 8
⊢ (𝑅‘∅) = (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) |
73 | | frec0g 6067 |
. . . . . . . . 9
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
74 | 51, 73 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
75 | 72, 74 | syl5eq 2127 |
. . . . . . 7
⊢ (𝜑 → (𝑅‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
76 | | frec0g 6067 |
. . . . . . . 8
⊢
(〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
77 | 51, 76 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅) = 〈𝑀, (𝐹‘𝑀)〉) |
78 | 75, 77 | eqtr4d 2118 |
. . . . . 6
⊢ (𝜑 → (𝑅‘∅) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘∅)) |
79 | 13 | ad2antlr 473 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑅:ω⟶((ℤ≥‘𝑀) × 𝑆)) |
80 | | simpll 496 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑘 ∈ ω) |
81 | 79, 80 | ffvelrnd 5356 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
82 | | xp1st 5844 |
. . . . . . . . . . 11
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) |
83 | 81, 82 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀)) |
84 | 9 | ad2antlr 473 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 𝑆 ⊆ 𝑇) |
85 | | xp2nd 5845 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (2nd ‘(𝑅‘𝑘)) ∈ 𝑆) |
86 | 81, 85 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ 𝑆) |
87 | 84, 86 | sseldd 3010 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (2nd ‘(𝑅‘𝑘)) ∈ 𝑇) |
88 | 29 | adantll 460 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
89 | 88 | adantlr 461 |
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
90 | | fveq2 5230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → (𝐹‘𝑎) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
91 | 90 | eleq1d 2151 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = ((1st
‘(𝑅‘𝑘)) + 1) → ((𝐹‘𝑎) ∈ 𝑆 ↔ (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝑆)) |
92 | | fveq2 5230 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
93 | 92 | eleq1d 2151 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑎) ∈ 𝑆)) |
94 | 93 | cbvralv 2582 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) |
95 | 5, 94 | sylib 120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) |
96 | 95 | ad2antlr 473 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐹‘𝑎) ∈ 𝑆) |
97 | | peano2uz 8788 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) → ((1st
‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) |
98 | 83, 97 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀)) |
99 | 91, 96, 98 | rspcdva 2716 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)) ∈ 𝑆) |
100 | 89, 86, 99 | caovcld 5706 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝑆) |
101 | | oveq1 5571 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝑧 + 1) = ((1st ‘(𝑅‘𝑘)) + 1)) |
102 | 101 | fveq2d 5234 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
103 | 102 | oveq2d 5580 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (1st ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
104 | | oveq1 5571 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (2nd ‘(𝑅‘𝑘)) → (𝑤 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
105 | | eqid 2083 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) |
106 | 103, 104,
105 | ovmpt2g 5687 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ 𝑆 ∧ ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) ∈ 𝑆) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
107 | 83, 86, 100, 106 | syl3anc 1170 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
108 | 107 | opeq2d 3598 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
109 | 107, 100 | eqeltrd 2159 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) ∈ 𝑆) |
110 | | opelxpi 4423 |
. . . . . . . . . . . 12
⊢
((((1st ‘(𝑅‘𝑘)) + 1) ∈
(ℤ≥‘𝑀) ∧ ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘))) ∈ 𝑆) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
111 | 98, 109, 110 | syl2anc 403 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
112 | 108, 111 | eqeltrrd 2160 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
113 | | oveq1 5571 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥 + 1) = ((1st ‘(𝑅‘𝑘)) + 1)) |
114 | 113 | fveq2d 5234 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝐹‘(𝑥 + 1)) = (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) |
115 | 114 | oveq2d 5580 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
116 | 113, 115 | opeq12d 3599 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
117 | | oveq1 5571 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1))) = ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))) |
118 | 117 | opeq2d 3598 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), (𝑦 + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((2nd
‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
119 | 116, 118,
44 | ovmpt2g 5687 |
. . . . . . . . . 10
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ 𝑇 ∧ 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
120 | 83, 87, 112, 119 | syl3anc 1170 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
121 | 49 | ad2antlr 473 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
122 | 51 | ad2antlr 473 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
123 | | frecsuc 6077 |
. . . . . . . . . . . 12
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
124 | 121, 122,
80, 123 | syl3anc 1170 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
125 | | simpr 108 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
126 | 125 | fveq2d 5234 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
127 | 124, 126 | eqtr4d 2118 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘))) |
128 | | 1st2nd2 5853 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑘) ∈ ((ℤ≥‘𝑀) × 𝑆) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) |
129 | 81, 128 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘𝑘) = 〈(1st ‘(𝑅‘𝑘)), (2nd ‘(𝑅‘𝑘))〉) |
130 | 129 | fveq2d 5234 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
131 | | df-ov 5567 |
. . . . . . . . . . 11
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) |
132 | 130, 131 | syl6eqr 2133 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)‘(𝑅‘𝑘)) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) |
133 | 127, 132 | eqtrd 2115 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)(2nd ‘(𝑅‘𝑘)))) |
134 | 12 | fveq1i 5231 |
. . . . . . . . . . . . . . 15
⊢ (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) |
135 | 17 | fveq2d 5234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉)) |
136 | | df-ov 5567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘𝑢), (2nd
‘𝑢)〉) |
137 | 135, 136 | syl6eqr 2133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢))) |
138 | | oveq1 5571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = (1st ‘𝑢) → (𝑧 + 1) = ((1st ‘𝑢) + 1)) |
139 | 138 | fveq2d 5234 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = (1st ‘𝑢) → (𝐹‘(𝑧 + 1)) = (𝐹‘((1st ‘𝑢) + 1))) |
140 | 139 | oveq2d 5580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = (1st ‘𝑢) → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘((1st ‘𝑢) + 1)))) |
141 | | oveq1 5571 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (2nd ‘𝑢) → (𝑤 + (𝐹‘((1st ‘𝑢) + 1))) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
142 | 140, 141,
105 | ovmpt2g 5687 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ 𝑆 ∧ ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) + 1))) ∈
𝑆) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
143 | 22, 25, 35, 142 | syl3anc 1170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) = ((2nd
‘𝑢) + (𝐹‘((1st
‘𝑢) +
1)))) |
144 | 143, 35 | eqeltrd 2159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) ∈ 𝑆) |
145 | | opelxpi 4423 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((1st ‘𝑢) + 1) ∈
(ℤ≥‘𝑀) ∧ ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢)) ∈ 𝑆) → 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
146 | 28, 144, 145 | syl2anc 403 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) |
147 | | oveq1 5571 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (1st ‘𝑢) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) |
148 | 38, 147 | opeq12d 3599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (1st ‘𝑢) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
149 | | oveq2 5572 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = (2nd ‘𝑢) → ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))) |
150 | 149 | opeq2d 3598 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (2nd ‘𝑢) → 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
151 | | eqid 2083 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
152 | 148, 150,
151 | ovmpt2g 5687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑢) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘𝑢) ∈ 𝑇 ∧ 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
153 | 22, 26, 146, 152 | syl3anc 1170 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘𝑢)(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘𝑢)) = 〈((1st
‘𝑢) + 1),
((1st ‘𝑢)(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
154 | 137, 153 | eqtrd 2115 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) = 〈((1st ‘𝑢) + 1), ((1st
‘𝑢)(𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘𝑢))〉) |
155 | 154, 146 | eqeltrd 2159 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
156 | 155 | ralrimiva 2439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
157 | 156 | ad2antlr 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ∀𝑢 ∈ ((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆)) |
158 | | frecsuc 6077 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑢 ∈
((ℤ≥‘𝑀) × 𝑆)((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘𝑢) ∈ ((ℤ≥‘𝑀) × 𝑆) ∧ 〈𝑀, (𝐹‘𝑀)〉 ∈
((ℤ≥‘𝑀) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
159 | 157, 122,
80, 158 | syl3anc 1170 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
160 | 134, 159 | syl5eq 2127 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘))) |
161 | 12 | fveq1i 5231 |
. . . . . . . . . . . . . . 15
⊢ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) |
162 | 161 | fveq2i 5233 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) |
163 | 160, 162 | syl6eqr 2133 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘))) |
164 | 129 | fveq2d 5234 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘(𝑅‘𝑘)) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
165 | 163, 164 | eqtrd 2115 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉)) |
166 | | df-ov 5567 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)‘〈(1st
‘(𝑅‘𝑘)), (2nd
‘(𝑅‘𝑘))〉) |
167 | 165, 166 | syl6eqr 2133 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘)))) |
168 | | oveq1 5571 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)) |
169 | 113, 168 | opeq12d 3599 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘(𝑅‘𝑘)) → 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
170 | | oveq2 5572 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))) |
171 | 170 | opeq2d 3598 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘(𝑅‘𝑘)) → 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈((1st
‘(𝑅‘𝑘)) + 1), ((1st
‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
172 | 169, 171,
151 | ovmpt2g 5687 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝑅‘𝑘)) ∈ (ℤ≥‘𝑀) ∧ (2nd
‘(𝑅‘𝑘)) ∈ 𝑇 ∧ 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉 ∈
((ℤ≥‘𝑀) × 𝑆)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
173 | 83, 87, 111, 172 | syl3anc 1170 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → ((1st ‘(𝑅‘𝑘))(𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉)(2nd ‘(𝑅‘𝑘))) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
174 | 167, 173 | eqtrd 2115 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((1st ‘(𝑅‘𝑘))(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(2nd ‘(𝑅‘𝑘)))〉) |
175 | 174, 108 | eqtrd 2115 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = 〈((1st ‘(𝑅‘𝑘)) + 1), ((2nd ‘(𝑅‘𝑘)) + (𝐹‘((1st ‘(𝑅‘𝑘)) + 1)))〉) |
176 | 120, 133,
175 | 3eqtr4rd 2126 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)) |
177 | 176 | exp31 356 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝜑 → ((𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘) → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
178 | 177 | a2d 26 |
. . . . . 6
⊢ (𝑘 ∈ ω → ((𝜑 → (𝑅‘𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑘)) → (𝜑 → (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘suc 𝑘)))) |
179 | 59, 63, 67, 71, 78, 178 | finds 4370 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝜑 → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛))) |
180 | 179 | impcom 123 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑅‘𝑛) = (frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)‘𝑛)) |
181 | 15, 55, 180 | eqfnfvd 5321 |
. . 3
⊢ (𝜑 → 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
182 | 181 | rneqd 4612 |
. 2
⊢ (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
183 | | df-iseq 9558 |
. 2
⊢ seq𝑀( + , 𝐹, 𝑇) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
184 | 182, 183 | syl6reqr 2134 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑇) = ran 𝑅) |