ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi GIF version

Theorem isnumi 7031
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3927 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
21rspcev 2784 . . . 4 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑦 ∈ On 𝑦𝐵)
3 intexrabim 4073 . . . 4 (∃𝑦 ∈ On 𝑦𝐵 {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
5 encv 6633 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65simprd 113 . . . . 5 (𝐴𝐵𝐵 ∈ V)
7 breq2 3928 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
87rabbidv 2670 . . . . . . . 8 (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
98inteqd 3771 . . . . . . 7 (𝑥 = 𝐵 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
109eleq1d 2206 . . . . . 6 (𝑥 = 𝐵 → ( {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1110elrab3 2836 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
126, 11syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1312adantl 275 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
144, 13mpbird 166 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V})
15 df-card 7029 . . 3 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
1615dmmpt 5029 . 2 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
1714, 16eleqtrrdi 2231 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2415  {crab 2418  Vcvv 2681   cint 3766   class class class wbr 3924  Oncon0 4280  dom cdm 4534  cen 6625  cardccrd 7028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-xp 4540  df-rel 4541  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-en 6628  df-card 7029
This theorem is referenced by:  finnum  7032  onenon  7033
  Copyright terms: Public domain W3C validator