ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isotr GIF version

Theorem isotr 5483
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Proof of Theorem isotr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 106 . . . 4 ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → 𝐺:𝐵1-1-onto𝐶)
2 simpl 106 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐴1-1-onto𝐵)
3 f1oco 5176 . . . 4 ((𝐺:𝐵1-1-onto𝐶𝐻:𝐴1-1-onto𝐵) → (𝐺𝐻):𝐴1-1-onto𝐶)
41, 2, 3syl2anr 278 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (𝐺𝐻):𝐴1-1-onto𝐶)
5 f1of 5153 . . . . . . . . . . . 12 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
65ad2antrr 465 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝐻:𝐴𝐵)
7 simprl 491 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
86, 7ffvelrnd 5330 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥) ∈ 𝐵)
9 simprr 492 . . . . . . . . . . 11 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
106, 9ffvelrnd 5330 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑦) ∈ 𝐵)
11 simplrr 496 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))
12 breq1 3794 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝑧𝑆𝑤 ↔ (𝐻𝑥)𝑆𝑤))
13 fveq2 5205 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑥) → (𝐺𝑧) = (𝐺‘(𝐻𝑥)))
1413breq1d 3801 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → ((𝐺𝑧)𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)))
1512, 14bibi12d 228 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → ((𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤))))
16 breq2 3795 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑆𝑤 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
17 fveq2 5205 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑦) → (𝐺𝑤) = (𝐺‘(𝐻𝑦)))
1817breq2d 3803 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → ((𝐺‘(𝐻𝑥))𝑇(𝐺𝑤) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
1916, 18bibi12d 228 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (((𝐻𝑥)𝑆𝑤 ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺𝑤)) ↔ ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦)))))
2015, 19rspc2va 2685 . . . . . . . . . 10 ((((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
218, 10, 11, 20syl21anc 1145 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
22 fvco3 5271 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
236, 7, 22syl2anc 397 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
24 fvco3 5271 . . . . . . . . . . 11 ((𝐻:𝐴𝐵𝑦𝐴) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
256, 9, 24syl2anc 397 . . . . . . . . . 10 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝐻)‘𝑦) = (𝐺‘(𝐻𝑦)))
2623, 25breq12d 3804 . . . . . . . . 9 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦) ↔ (𝐺‘(𝐻𝑥))𝑇(𝐺‘(𝐻𝑦))))
2721, 26bitr4d 184 . . . . . . . 8 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
2827bibi2d 225 . . . . . . 7 (((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
29282ralbidva 2363 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3029biimpd 136 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3130impancom 251 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3231imp 119 . . 3 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦)))
334, 32jca 294 . 2 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))) → ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
34 df-isom 4938 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
35 df-isom 4938 . . 3 (𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶) ↔ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤))))
3634, 35anbi12i 441 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) ↔ ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝐺:𝐵1-1-onto𝐶 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐺𝑧)𝑇(𝐺𝑤)))))
37 df-isom 4938 . 2 ((𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶) ↔ ((𝐺𝐻):𝐴1-1-onto𝐶 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝐺𝐻)‘𝑥)𝑇((𝐺𝐻)‘𝑦))))
3833, 36, 373imtr4i 194 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323   class class class wbr 3791  ccom 4376  wf 4925  1-1-ontowf1o 4928  cfv 4929   Isom wiso 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-isom 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator