![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isprm4 | GIF version |
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
isprm4 | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 10690 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
2 | eluz2nn 8774 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) → 𝑧 ∈ ℕ) | |
3 | 2 | pm4.71ri 384 | . . . . . . 7 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2))) |
4 | 3 | imbi1i 236 | . . . . . 6 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
5 | impexp 259 | . . . . . 6 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
6 | 4, 5 | bitri 182 | . . . . 5 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) |
7 | eluz2b3 8808 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1)) | |
8 | 7 | imbi1i 236 | . . . . . . 7 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
9 | impexp 259 | . . . . . . . 8 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
10 | bi2.04 246 | . . . . . . . . . 10 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃))) | |
11 | nnz 8487 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
12 | 1zzd 8495 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℤ) | |
13 | zdceq 8540 | . . . . . . . . . . . . . 14 ⊢ ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑧 = 1) | |
14 | 11, 12, 13 | syl2anc 403 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ ℕ → DECID 𝑧 = 1) |
15 | dfordc 825 | . . . . . . . . . . . . 13 ⊢ (DECID 𝑧 = 1 → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) | |
16 | 14, 15 | syl 14 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) |
17 | df-ne 2250 | . . . . . . . . . . . . 13 ⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) | |
18 | 17 | imbi1i 236 | . . . . . . . . . . . 12 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) |
19 | 16, 18 | syl6rbbr 197 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
20 | 19 | imbi2d 228 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
21 | 10, 20 | syl5bb 190 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
22 | 21 | imbi2d 228 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
23 | 9, 22 | syl5bb 190 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
24 | 8, 23 | syl5bb 190 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
25 | 24 | pm5.74i 178 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
26 | pm5.4 247 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
27 | 6, 25, 26 | 3bitri 204 | . . . 4 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
28 | 27 | ralbii2 2381 | . . 3 ⊢ (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
29 | 28 | anbi2i 445 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
30 | 1, 29 | bitr4i 185 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 662 DECID wdc 776 = wceq 1285 ∈ wcel 1434 ≠ wne 2249 ∀wral 2353 class class class wbr 3806 ‘cfv 4953 1c1 7080 ℕcn 8142 2c2 8192 ℤcz 8468 ℤ≥cuz 8736 ∥ cdvds 10387 ℙcprime 10680 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulrcl 7173 ax-addcom 7174 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-i2m1 7179 ax-0lt1 7180 ax-1rid 7181 ax-0id 7182 ax-rnegex 7183 ax-precex 7184 ax-cnre 7185 ax-pre-ltirr 7186 ax-pre-ltwlin 7187 ax-pre-lttrn 7188 ax-pre-apti 7189 ax-pre-ltadd 7190 ax-pre-mulgt0 7191 ax-pre-mulext 7192 ax-arch 7193 ax-caucvg 7194 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-frec 6061 df-1o 6086 df-2o 6087 df-er 6194 df-en 6310 df-pnf 7253 df-mnf 7254 df-xr 7255 df-ltxr 7256 df-le 7257 df-sub 7384 df-neg 7385 df-reap 7778 df-ap 7785 df-div 7864 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-n0 8392 df-z 8469 df-uz 8737 df-q 8822 df-rp 8852 df-iseq 9558 df-iexp 9609 df-cj 9914 df-re 9915 df-im 9916 df-rsqrt 10069 df-abs 10070 df-dvds 10388 df-prm 10681 |
This theorem is referenced by: nprm 10696 prmuz2 10703 dvdsprm 10709 |
Copyright terms: Public domain | W3C validator |