Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf GIF version

Theorem issetf 2579
 Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1 𝑥𝐴
Assertion
Ref Expression
issetf (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)

Proof of Theorem issetf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 2578 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 issetf.1 . . . 4 𝑥𝐴
32nfeq2 2205 . . 3 𝑥 𝑦 = 𝐴
4 nfv 1437 . . 3 𝑦 𝑥 = 𝐴
5 eqeq1 2062 . . 3 (𝑦 = 𝑥 → (𝑦 = 𝐴𝑥 = 𝐴))
63, 4, 5cbvex 1655 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
71, 6bitri 177 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102   = wceq 1259  ∃wex 1397   ∈ wcel 1409  Ⅎwnfc 2181  Vcvv 2574 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576 This theorem is referenced by:  vtoclgf  2629  spcimgft  2646  spcimegft  2648  bj-vtoclgft  10301
 Copyright terms: Public domain W3C validator