Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo GIF version

Theorem issmo 5958
 Description: Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1 𝐴:𝐵⟶On
issmo.2 Ord 𝐵
issmo.3 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
issmo.4 dom 𝐴 = 𝐵
Assertion
Ref Expression
issmo Smo 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3 𝐴:𝐵⟶On
2 issmo.4 . . . 4 dom 𝐴 = 𝐵
32feq2i 5091 . . 3 (𝐴:dom 𝐴⟶On ↔ 𝐴:𝐵⟶On)
41, 3mpbir 144 . 2 𝐴:dom 𝐴⟶On
5 issmo.2 . . 3 Ord 𝐵
6 ordeq 4155 . . . 4 (dom 𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord 𝐵))
72, 6ax-mp 7 . . 3 (Ord dom 𝐴 ↔ Ord 𝐵)
85, 7mpbir 144 . 2 Ord dom 𝐴
92eleq2i 2149 . . . 4 (𝑥 ∈ dom 𝐴𝑥𝐵)
102eleq2i 2149 . . . 4 (𝑦 ∈ dom 𝐴𝑦𝐵)
11 issmo.3 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
129, 10, 11syl2anb 285 . . 3 ((𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
1312rgen2a 2422 . 2 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))
14 df-smo 5956 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
154, 8, 13, 14mpbir3an 1121 1 Smo 𝐴
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ∀wral 2353  Ord word 4145  Oncon0 4146  dom cdm 4391  ⟶wf 4948  ‘cfv 4952  Smo wsmo 5955 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-in 2988  df-ss 2995  df-uni 3622  df-tr 3896  df-iord 4149  df-fn 4955  df-f 4956  df-smo 5956 This theorem is referenced by:  iordsmo  5967
 Copyright terms: Public domain W3C validator