Step | Hyp | Ref
| Expression |
1 | | addid2 7366 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
2 | 1 | adantl 271 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛) |
3 | | 0cnd 7226 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 0 ∈
ℂ) |
4 | | isumrb.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | 4 | adantr 270 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | | eluzelz 8761 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
7 | 5, 6 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
8 | | eleq1 2145 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (𝑘 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) |
9 | 8 | ifbid 3387 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑁 ∈ 𝐴, 𝐵, 0)) |
10 | 9 | eleq1d 2151 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑁 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
11 | | isummo.dc |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
12 | | exmiddc 778 |
. . . . . . . . 9
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
13 | 11, 12 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
14 | | iftrue 3373 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
15 | 14 | adantl 271 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
16 | | isummo.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
17 | 15, 16 | eqeltrd 2159 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
18 | 17 | ex 113 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
19 | | iffalse 3376 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
20 | | 0cn 7225 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
21 | 19, 20 | syl6eqel 2173 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
22 | 21 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
23 | 18, 22 | jaod 670 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
24 | 23 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
25 | 13, 24 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
26 | 25 | ralrimiva 2439 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
27 | 10, 26, 4 | rspcdva 2715 |
. . . . 5
⊢ (𝜑 → if(𝑁 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
28 | 27 | adantr 270 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → if(𝑁 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
29 | | isummo.1 |
. . . . 5
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
30 | 9, 29 | fvmptg 5300 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ if(𝑁 ∈ 𝐴, 𝐵, 0) ∈ ℂ) → (𝐹‘𝑁) = if(𝑁 ∈ 𝐴, 𝐵, 0)) |
31 | 7, 28, 30 | syl2anc 403 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) = if(𝑁 ∈ 𝐴, 𝐵, 0)) |
32 | 31, 28 | eqeltrd 2159 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ∈ ℂ) |
33 | | elfzelz 9173 |
. . . 4
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
34 | | eleq1 2145 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑘 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) |
35 | 34 | ifbid 3387 |
. . . . . 6
⊢ (𝑘 = 𝑛 → if(𝑘 ∈ 𝐴, 𝐵, 0) = if(𝑛 ∈ 𝐴, 𝐵, 0)) |
36 | 35 | eleq1d 2151 |
. . . . 5
⊢ (𝑘 = 𝑛 → (if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ ↔ if(𝑛 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
37 | 26 | ad2antrr 472 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈
(ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
38 | | elfzuz 9169 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
39 | 38 | adantl 271 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
40 | 36, 37, 39 | rspcdva 2715 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
41 | 35, 29 | fvmptg 5300 |
. . . 4
⊢ ((𝑛 ∈ ℤ ∧ if(𝑛 ∈ 𝐴, 𝐵, 0) ∈ ℂ) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, 𝐵, 0)) |
42 | 33, 40, 41 | syl2an2 559 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, 𝐵, 0)) |
43 | | uznfz 9248 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ¬ 𝑛 ∈ (𝑀...(𝑁 − 1))) |
44 | 43 | con2i 590 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ≥‘𝑁)) |
45 | 44 | adantl 271 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈
(ℤ≥‘𝑁)) |
46 | | ssel 3002 |
. . . . . 6
⊢ (𝐴 ⊆
(ℤ≥‘𝑁) → (𝑛 ∈ 𝐴 → 𝑛 ∈ (ℤ≥‘𝑁))) |
47 | 46 | ad2antlr 473 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 ∈ 𝐴 → 𝑛 ∈ (ℤ≥‘𝑁))) |
48 | 45, 47 | mtod 622 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ 𝐴) |
49 | 48 | iffalsed 3378 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → if(𝑛 ∈ 𝐴, 𝐵, 0) = 0) |
50 | 42, 49 | eqtrd 2115 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = 0) |
51 | | eluzelz 8761 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
52 | 26 | ad2antrr 472 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
53 | | simpr 108 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
54 | 36, 52, 53 | rspcdva 2715 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → if(𝑛 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
55 | 51, 54, 41 | syl2an2 559 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑛) = if(𝑛 ∈ 𝐴, 𝐵, 0)) |
56 | 55, 54 | eqeltrd 2159 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑛) ∈ ℂ) |
57 | | addcl 7212 |
. . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑛 + 𝑧) ∈ ℂ) |
58 | 57 | adantl 271 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ (𝑛 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑛 + 𝑧) ∈ ℂ) |
59 | 2, 3, 5, 32, 50, 56, 58 | iseqid 9615 |
1
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹, ℂ) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹, ℂ)) |