Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst GIF version

Theorem iunxpconst 4446
 Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4445 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 3753 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 4411 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2105 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1285  {csn 3416  ∪ ciun 3698   × cxp 4389 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-iun 3700  df-opab 3860  df-xp 4397 This theorem is referenced by:  ralxp  4527  rexxp  4528  mpt2mpt  5648  mpt2mpts  5876  fmpt2  5879
 Copyright terms: Public domain W3C validator