ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxdisj GIF version

Theorem ixxdisj 8843
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
Assertion
Ref Expression
ixxdisj ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)

Proof of Theorem ixxdisj
StepHypRef Expression
1 elin 3151 . . . 4 (𝑤 ∈ ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)))
2 ixxssixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32elixx1 8837 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
433adant3 933 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
54biimpa 284 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
65simp3d 927 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
76adantrr 456 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤𝑆𝐵)
8 ixxun.2 . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
98elixx1 8837 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
1093adant1 931 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
1110biimpa 284 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
1211simp2d 926 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
13 simpl2 917 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
1411simp1d 925 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
15 ixxun.3 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
1613, 14, 15syl2anc 397 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
1712, 16mpbid 139 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ¬ 𝑤𝑆𝐵)
1817adantrl 455 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶))) → ¬ 𝑤𝑆𝐵)
197, 18pm2.65da 595 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)))
2019pm2.21d 557 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ∅))
211, 20syl5bi 145 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) → 𝑤 ∈ ∅))
2221ssrdv 2976 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ⊆ ∅)
23 ss0 3282 . 2 (((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ⊆ ∅ → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
2422, 23syl 14 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  w3a 894   = wceq 1257  wcel 1407  {crab 2325  cin 2941  wss 2942  c0 3249   class class class wbr 3789  (class class class)co 5537  cmpt2 5539  *cxr 7088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-cnex 7003  ax-resscn 7004
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7091  df-mnf 7092  df-xr 7093
This theorem is referenced by:  ioodisj  8932
  Copyright terms: Public domain W3C validator