ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxex GIF version

Theorem ixxex 8869
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxex 𝑂 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 8857 . . . 4 * ∈ V
21, 1xpex 4481 . . 3 (ℝ* × ℝ*) ∈ V
31pwex 3960 . . 3 𝒫 ℝ* ∈ V
42, 3xpex 4481 . 2 ((ℝ* × ℝ*) × 𝒫 ℝ*) ∈ V
5 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65ixxf 8868 . . 3 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
7 fssxp 5086 . . 3 (𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*))
86, 7ax-mp 7 . 2 𝑂 ⊆ ((ℝ* × ℝ*) × 𝒫 ℝ*)
94, 8ssexi 3923 1 𝑂 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 101   = wceq 1259  wcel 1409  {crab 2327  Vcvv 2574  wss 2945  𝒫 cpw 3387   class class class wbr 3792   × cxp 4371  wf 4926  cmpt2 5542  *cxr 7118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-cnex 7033  ax-resscn 7034
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fv 4938  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-pnf 7121  df-mnf 7122  df-xr 7123
This theorem is referenced by:  iooex  8877
  Copyright terms: Public domain W3C validator