ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxf GIF version

Theorem ixxf 8868
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxf 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxf
StepHypRef Expression
1 ssrab2 3053 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ⊆ ℝ*
2 xrex 8857 . . . . 5 * ∈ V
32elpw2 3939 . . . 4 ({𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ⊆ ℝ*)
41, 3mpbir 138 . . 3 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
54rgen2w 2394 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
6 ixx.1 . . 3 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
76fmpt2 5855 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*)
85, 7mpbi 137 1 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff set class
Syntax hints:  wa 101   = wceq 1259  wcel 1409  wral 2323  {crab 2327  wss 2945  𝒫 cpw 3387   class class class wbr 3792   × cxp 4371  wf 4926  cmpt2 5542  *cxr 7118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-cnex 7033  ax-resscn 7034
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fv 4938  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-pnf 7121  df-mnf 7122  df-xr 7123
This theorem is referenced by:  ixxex  8869  ixxssxr  8870  iccf  8942
  Copyright terms: Public domain W3C validator