ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jao1i GIF version

Theorem jao1i 743
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 5 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 669 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  nn0enne  10446
  Copyright terms: Public domain W3C validator