![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > kcnktkm1cn | GIF version |
Description: k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
Ref | Expression |
---|---|
kcnktkm1cn | ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐾 ∈ ℂ → 𝐾 ∈ ℂ) | |
2 | ax-1cn 7120 | . . . 4 ⊢ 1 ∈ ℂ | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐾 ∈ ℂ → 1 ∈ ℂ) |
4 | 1, 3 | subcld 7475 | . 2 ⊢ (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ) |
5 | 1, 4 | mulcld 7190 | 1 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 (class class class)co 5537 ℂcc 7030 1c1 7033 · cmul 7037 − cmin 7335 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-setind 4282 ax-resscn 7119 ax-1cn 7120 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-addcom 7127 ax-addass 7129 ax-distr 7131 ax-i2m1 7132 ax-0id 7135 ax-rnegex 7136 ax-cnre 7138 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-sub 7337 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |