![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lcmledvds | GIF version |
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmledvds | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmn0val 10655 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) | |
2 | 1 | 3adantl1 1095 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
3 | 2 | adantr 270 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
4 | 1zzd 8511 | . . . 4 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → 1 ∈ ℤ) | |
5 | nnuz 8787 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | rabeq 2602 | . . . . 5 ⊢ (ℕ = (ℤ≥‘1) → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ (ℤ≥‘1) ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | |
7 | 5, 6 | ax-mp 7 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ (ℤ≥‘1) ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} |
8 | simpll1 978 | . . . . 5 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → 𝐾 ∈ ℕ) | |
9 | simpr 108 | . . . . 5 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) | |
10 | breq2 3809 | . . . . . . 7 ⊢ (𝑛 = 𝐾 → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾)) | |
11 | breq2 3809 | . . . . . . 7 ⊢ (𝑛 = 𝐾 → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾)) | |
12 | 10, 11 | anbi12d 457 | . . . . . 6 ⊢ (𝑛 = 𝐾 → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
13 | 12 | elrab 2757 | . . . . 5 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾))) |
14 | 8, 9, 13 | sylanbrc 408 | . . . 4 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
15 | simpll2 979 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → 𝑀 ∈ ℤ) | |
16 | elfzelz 9173 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...𝐾) → 𝑛 ∈ ℤ) | |
17 | 16 | adantl 271 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → 𝑛 ∈ ℤ) |
18 | zdvdsdc 10424 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑀 ∥ 𝑛) | |
19 | 15, 17, 18 | syl2anc 403 | . . . . . 6 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → DECID 𝑀 ∥ 𝑛) |
20 | simpll3 980 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → 𝑁 ∈ ℤ) | |
21 | zdvdsdc 10424 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑁 ∥ 𝑛) | |
22 | 20, 17, 21 | syl2anc 403 | . . . . . 6 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → DECID 𝑁 ∥ 𝑛) |
23 | dcan 876 | . . . . . 6 ⊢ (DECID 𝑀 ∥ 𝑛 → (DECID 𝑁 ∥ 𝑛 → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) | |
24 | 19, 22, 23 | sylc 61 | . . . . 5 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ 𝑛 ∈ (1...𝐾)) → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
25 | 24 | adantlr 461 | . . . 4 ⊢ (((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) ∧ 𝑛 ∈ (1...𝐾)) → DECID (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
26 | 4, 7, 14, 25 | infssuzledc 10553 | . . 3 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ≤ 𝐾) |
27 | 3, 26 | eqbrtrd 3825 | . 2 ⊢ ((((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) ≤ 𝐾) |
28 | 27 | ex 113 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 662 DECID wdc 776 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 {crab 2357 class class class wbr 3805 ‘cfv 4952 (class class class)co 5563 infcinf 6490 ℝcr 7094 0cc0 7095 1c1 7096 < clt 7267 ≤ cle 7268 ℕcn 8158 ℤcz 8484 ℤ≥cuz 8752 ...cfz 9157 ∥ cdvds 10403 lcm clcm 10649 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 ax-arch 7209 ax-caucvg 7210 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-isom 4961 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-sup 6491 df-inf 6492 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-2 8217 df-3 8218 df-4 8219 df-n0 8408 df-z 8485 df-uz 8753 df-q 8838 df-rp 8868 df-fz 9158 df-fzo 9282 df-fl 9404 df-mod 9457 df-iseq 9574 df-iexp 9625 df-cj 9930 df-re 9931 df-im 9932 df-rsqrt 10085 df-abs 10086 df-dvds 10404 df-lcm 10650 |
This theorem is referenced by: lcmneg 10663 |
Copyright terms: Public domain | W3C validator |