ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i GIF version

Theorem le2tri3i 7185
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
le2tri3i ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6 𝐵 ∈ ℝ
2 lt.3 . . . . . 6 𝐶 ∈ ℝ
3 lt.1 . . . . . 6 𝐴 ∈ ℝ
41, 2, 3letri 7184 . . . . 5 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
53, 1letri3i 7175 . . . . . 6 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
65biimpri 128 . . . . 5 ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
74, 6sylan2 274 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐶𝐶𝐴)) → 𝐴 = 𝐵)
873impb 1111 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐴 = 𝐵)
92, 3, 1letri 7184 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
101, 2letri3i 7175 . . . . . . 7 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
1110biimpri 128 . . . . . 6 ((𝐵𝐶𝐶𝐵) → 𝐵 = 𝐶)
129, 11sylan2 274 . . . . 5 ((𝐵𝐶 ∧ (𝐶𝐴𝐴𝐵)) → 𝐵 = 𝐶)
13123impb 1111 . . . 4 ((𝐵𝐶𝐶𝐴𝐴𝐵) → 𝐵 = 𝐶)
14133comr 1123 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐵 = 𝐶)
153, 1, 2letri 7184 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
163, 2letri3i 7175 . . . . . . 7 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
1716biimpri 128 . . . . . 6 ((𝐴𝐶𝐶𝐴) → 𝐴 = 𝐶)
1817eqcomd 2061 . . . . 5 ((𝐴𝐶𝐶𝐴) → 𝐶 = 𝐴)
1915, 18sylan 271 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐶𝐴) → 𝐶 = 𝐴)
20193impa 1110 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 = 𝐴)
218, 14, 203jca 1095 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
223eqlei 7170 . . 3 (𝐴 = 𝐵𝐴𝐵)
231eqlei 7170 . . 3 (𝐵 = 𝐶𝐵𝐶)
242eqlei 7170 . . 3 (𝐶 = 𝐴𝐶𝐴)
2522, 23, 243anim123i 1100 . 2 ((𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴) → (𝐴𝐵𝐵𝐶𝐶𝐴))
2621, 25impbii 121 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409   class class class wbr 3792  cr 6946  cle 7120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-apti 7057
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator