ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a GIF version

Theorem leexp1a 10303
Description: Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Proof of Theorem leexp1a
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
2 oveq2 5750 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
31, 2breq12d 3912 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0)))
43imbi2d 229 . . . . 5 (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))))
5 oveq2 5750 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
6 oveq2 5750 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
75, 6breq12d 3912 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑘) ≤ (𝐵𝑘)))
87imbi2d 229 . . . . 5 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘))))
9 oveq2 5750 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
10 oveq2 5750 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
119, 10breq12d 3912 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
1211imbi2d 229 . . . . 5 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
13 oveq2 5750 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
14 oveq2 5750 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
1513, 14breq12d 3912 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑁) ≤ (𝐵𝑁)))
1615imbi2d 229 . . . . 5 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))))
17 recn 7721 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 7721 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp0 10252 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2019adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1)
21 1le1 8301 . . . . . . . . 9 1 ≤ 1
2220, 21eqbrtrdi 3937 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ 1)
23 exp0 10252 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
2423adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2522, 24breqtrrd 3926 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0))
2617, 18, 25syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0))
2726adantr 274 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))
28 simpll 503 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
29 reexpcl 10265 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
3028, 29sylan 281 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
31 simplll 507 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
32 simpr 109 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
33 simplrl 509 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
34 expge0 10284 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
3531, 32, 33, 34syl3anc 1201 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
36 simplr 504 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐵 ∈ ℝ)
37 reexpcl 10265 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3836, 37sylan 281 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3930, 35, 38jca31 307 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ))
40 simpl 108 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
41 simpl 108 . . . . . . . . . . . . . 14 ((0 ≤ 𝐴𝐴𝐵) → 0 ≤ 𝐴)
4240, 41anim12i 336 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4342adantr 274 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
44 simpllr 508 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℝ)
4539, 43, 44jca32 308 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
4645adantr 274 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
47 simpr 109 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ≤ (𝐵𝑘))
48 simplrr 510 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
4948adantr 274 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → 𝐴𝐵)
5047, 49jca 304 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵))
51 lemul12a 8584 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵)))
5246, 50, 51sylc 62 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵))
53 expp1 10255 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5417, 53sylan 281 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5554adantlr 468 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5655adantlr 468 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756adantr 274 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
58 expp1 10255 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5918, 58sylan 281 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6059adantll 467 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160adantlr 468 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6261adantr 274 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6352, 57, 623brtr4d 3930 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))
6463ex 114 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
6564expcom 115 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
6665a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
674, 8, 12, 16, 27, 66nn0ind 9123 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁)))
6867exp4c 365 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
6968com3l 81 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0 → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
70693imp1 1183 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  cr 7587  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593  cle 7769  0cn0 8935  cexp 10247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-n0 8936  df-z 9013  df-uz 9283  df-seqfrec 10174  df-exp 10248
This theorem is referenced by:  expubnd  10305  facubnd  10446  expcnvre  11227
  Copyright terms: Public domain W3C validator