![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leid | GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
leid | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7244 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | lenlt 7243 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐴)) | |
3 | 2 | anidms 389 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐴)) |
4 | 1, 3 | mpbird 165 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∈ wcel 1434 class class class wbr 3787 ℝcr 7031 < clt 7204 ≤ cle 7205 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-pre-ltirr 7139 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-xp 4371 df-cnv 4373 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 |
This theorem is referenced by: eqle 7258 leidi 7642 leidd 7671 lemulge11 8000 lediv2a 8029 |
Copyright terms: Public domain | W3C validator |